The non-dipolar magnetic fields of accreting T Tauri stars
Corresponding Author
S. G. Gregory
SUPA – School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS
E-mail: [email protected]Search for more papers by this authorS. P. Matt
Department of Astronomy, University of Virginia, PO Box 400325, Charlottesville, VA 22904-4325, USA
Search for more papers by this authorJ.-F. Donati
Laboratoire d'Astrophysique, Observatoire Midi-Pyrénées, 14 Av. E. Belin, F-31400 Toulouse, France
Search for more papers by this authorM. Jardine
SUPA – School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS
Search for more papers by this authorCorresponding Author
S. G. Gregory
SUPA – School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS
E-mail: [email protected]Search for more papers by this authorS. P. Matt
Department of Astronomy, University of Virginia, PO Box 400325, Charlottesville, VA 22904-4325, USA
Search for more papers by this authorJ.-F. Donati
Laboratoire d'Astrophysique, Observatoire Midi-Pyrénées, 14 Av. E. Belin, F-31400 Toulouse, France
Search for more papers by this authorM. Jardine
SUPA – School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS
Search for more papers by this authorABSTRACT
Models of magnetospheric accretion on to classical T Tauri stars often assume that stellar magnetic fields are simple dipoles. Recently published surface magnetograms of BP Tau and V2129 Oph have shown, however, that their fields are more complex. The magnetic field of V2129 Oph was found to be predominantly octupolar. For BP Tau, the magnetic energy was shared mainly between the dipole and octupole field components, with the dipole component being almost four times as strong as that of V2129 Oph. From the published surface maps of the photospheric magnetic fields, we extrapolate the coronal fields of both stars, and compare the resulting field structures with that of a dipole. We consider different models where the disc is truncated at, or well within, the Keplerian corotation radius. We find that although the structure of the surface magnetic field is particularly complex for both stars, the geometry of the larger scale field, along which accretion is occurring, is somewhat simpler. However, the larger scale field is distorted close to the star by the stronger field regions, with the net effect being that the fractional open flux through the stellar surface is less than would be expected with a dipole magnetic field model. Finally, we estimate the disc truncation radius, assuming that this occurs where the magnetic torque from the stellar magnetosphere is comparable to the viscous torque in the disc.
REFERENCES
- Altschuler M. D., Newkirk G., 1969, Sol. Phys., 9, 131
- Azevedo R., Calvet N., Hartmann L., Folha D. F. M., Gameiro F., Muzerolle J., 2006, A&A, 456, 225
- Beristain G., Edwards S., Kwan J., 2001, ApJ, 551, 1037
- Bessolaz N., Zanni C., Ferreira J., Keppens R., Bouvier J., 2008, A&A, 478, 155
- Bouvier J., 2007, in J. Bouvier, I. Appenzeller, eds, Proc. IAU Symp. Vol. 243, The Rotational Evolution of Young Low Mass Stars. Cambridge Univ. Press, Cambridge , p. 231
- Bouvier J. et al., 2007, A&A, 463, 1017
- Broeg C., Schmidt T. O. B., Guenther E., Gaedke A., Bedalov A., Neuhäuser R., Walter F. M., 2007, A&A, 468, 1039
- Browning M. K., 2008, ApJ, 676, 1262
- Chuntonov G. A., Smirnov D. A., Lamzin S. A., 2007, Astron. Lett., 33, 38
- Clarke C. J., Armitage P. J., Smith K. W., Pringle J. E., 1995, MNRAS, 273, 639
- Collier Cameron A., Campbell C. G., 1993, A&A, 274, 309
- Donati J.-F. et al., 2007, MNRAS, 380, 1297
- Donati J.-F., et al., 2008a, MNRAS, 386, 1234
- Donati J.-F., et al., 2008b, MNRAS, submitted
- Edwards S., Hartigan P., Ghandour L., Andrulis C., 1994, AJ, 108, 1056
- Eisner J. A., Hillenbrand L. A., White R. J., Akeson R. L., Sargent A. I., 2005, ApJ, 623, 952
- Favata F., Flaccomio E., Reale F., Micela G., Sciortino S., Shang H., Stassun K. G., Feigelson E. D., 2005, ApJS, 160, 469
- Ferreira J., Pelletier G., Appl S., 2000, MNRAS, 312, 387
- Ferreira J., Dougados C., Cabrit S., 2006, A&A, 453, 785
- Flaccomio E., Micela G., Sciortino S., Feigelson E. D., Herbst W., Favata F., Harnden F. R. Jr., Vrtilek S. D., 2005, ApJS, 160, 450
- Fleck R. C., 2008, Ap&SS, 313, 351
- Getman K. V., Feigelson E. F., Broos P. S., Micela G., Garmire G. P., 2008a, ApJ, in press (arXiv:0807.3005)
- Getman K. V., Feigelson E. F., Micela G., Jardine M. M., Gregory S. G., Garmire G. P., 2008b, ApJ, in press (arXiv:0807.3007)
- Gregory S. G., Jardine M., Collier Cameron A., Donati J.-F., 2005, in F. Favata, G. A. J. Hussain, B. Battrick, eds, Proc. 13th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, held 2004 July 5–9, Accretion Channelling in Classical T Tauri Stars, Vol. 13. Space Agency, ESA SP-560, Germany , Hamburg , European, p. 191
- Gregory S. G., Jardine M., Simpson I., Donati J.-F., 2006a, MNRAS, 371, 999
- Gregory S. G., Jardine M., Cameron A. C., Donati J.-F., 2006b, MNRAS, 373, 827
- Gregory S. G., Wood K., Jardine M., 2007, MNRAS, 379, L35
- Gullbring E., Hartmann L., Briceno C., Calvet N., 1998, ApJ, 492, 323
- Hartmann L., Hewett R., Calvet N., 1994, ApJ, 426, 669
- Hussain G. A. J., van Ballegooijen A. A., Jardine M., Collier Cameron A., 2002, ApJ, 575, 1078
- Jardine M., Cameron A. C., Donati J.-F., Gregory S. G., Wood K., 2006, MNRAS, 367, 917
- Jardine M. M., Gregory S. G., Donati J.-F., 2008, MNRAS, 386, 688
- Johns-Krull C. M., 2007, ApJ, 664, 975
- Johns-Krull C. M., Valenti J. A., Hatzes A. P., Kanaan A., 1999a, ApJ, 510, L41
- Johns-Krull C. M., Valenti J. A., Koresko C., 1999b, ApJ, 516, 900
- Königl A., 1991, ApJ, 370, L39
- Küker M., Henning T., Rüdiger G., 2003, ApJ, 589, 397
- Kurosawa R., Harries T. J., Symington N. H., 2006, MNRAS, 370, 580
- Lin D. N. C., Bodenheimer P., Richardson D. C., 1996, Nat, 380, 606
- Liu Y., Lin H., 2008, ApJ, 680, 1496
- Long M., Romanova M. M., Lovelace R. V. E., 2005, ApJ, 634, 1214
- Long M., Romanova M. M., Lovelace R. V. E., 2007, MNRAS, 374, 436
- Long M., Romanova M. M., Lovelace R. V. E., 2008, MNRAS, 386, 1274
- Mahdavi A., Kenyon S. J., 1998, ApJ, 497, 342
- Matt S., Pudritz R. E., 2005a, MNRAS, 356, 167
- Matt S., Pudritz R. E., 2005b, ApJ, 632, L135
- Matt S., Pudritz R. E., 2008a, ApJ, 678, 1109
- Matt S., Pudritz R. E., 2008b, ApJ, 681, 391
- Mohanty S., Jayawardhana R., Basri G., 2005, ApJ, 626, 498
- Muzerolle J., Calvet N., Hartmann L., 2001, ApJ, 550, 944
- Najita J., Carr J. S., Mathieu R. D., 2003, ApJ, 589, 931
- Riley P., Linker J. A., Mikić Z., Lionello R., Ledvina S. A., Luhmann J. G., 2006, ApJ, 653, 1510
- Robitaille T. P., Whitney B. A., Indebetouw R., Wood K., 2007, ApJS, 169, 328
- Romanova M. M., Lovelace R. V. E., 2006, ApJ, 645, L73
- Romanova M. M., Ustyugova G. V., Koldoba A. V., Wick J. V., Lovelace R. V. E., 2003, ApJ, 595, 1009
- Romanova M. M., Ustyugova G. V., Koldoba A. V., Lovelace R. V. E., 2004, ApJ, 610, 920
- Shu F., Najita J., Ostriker E., Wilkin F., Ruden S., Lizano S., 1994, ApJ, 429, 781
- Siess L., Dufour E., Forestini M., 2000, A&A, 358, 593
- Simon M., Dutrey A., Guilloteau S., 2000, ApJ, 545, 1034
- Symington N. H., Harries T. J., Kurosawa R., Naylor T., 2005, MNRAS, 358, 977
- Terquem C., Papaloizou J. C. B., 2000, A&A, 360, 1031
- Valenti J. A., Johns-Krull C. M., 2004, Ap&SS, 292, 619
- Valenti J. A., Johns-Krull C. M., Hatzes A. P., 2003, in A. Brown, Harper G. M., Ayres T. R., eds, The Future of Cool-Star Astrophysics: 12th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun (2001 July 30–August 3). Time Series Spectropolarimetry of T Tauri Stars, Vol. 12. University of Colorado , p. 729
- van Ballegooijen A. A., Cartledge N. P., Priest E. R., 1998, ApJ, 501, 866
- Wang Y.-M., 1996, ApJ, 465, L111
- Willis D. M., Young L. R., 1987, Geophys. J. Int., 89, 1011