Effects of quasar feedback in galaxy groups
Corresponding Author
Suman Bhattacharya
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
E-mail: [email protected] (SB); [email protected] (TDM); [email protected] (AK)Search for more papers by this authorCorresponding Author
Tiziana Di Matteo
Department of Physics, Carnegie-Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
E-mail: [email protected] (SB); [email protected] (TDM); [email protected] (AK)Search for more papers by this authorCorresponding Author
Arthur Kosowsky
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
E-mail: [email protected] (SB); [email protected] (TDM); [email protected] (AK)Search for more papers by this authorCorresponding Author
Suman Bhattacharya
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
E-mail: [email protected] (SB); [email protected] (TDM); [email protected] (AK)Search for more papers by this authorCorresponding Author
Tiziana Di Matteo
Department of Physics, Carnegie-Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
E-mail: [email protected] (SB); [email protected] (TDM); [email protected] (AK)Search for more papers by this authorCorresponding Author
Arthur Kosowsky
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
E-mail: [email protected] (SB); [email protected] (TDM); [email protected] (AK)Search for more papers by this authorABSTRACT
We study the effect of quasar feedback on distributions of baryons in galaxy groups using high-resolution numerical simulations. We use the entropy-conserving gadget code that includes gas cooling and star formation, modified to include a physically based model of quasar feedback. For a sample of 10 galaxy group-sized dark matter haloes with masses in the range of 1–5 × 1013 M⊙ h−1, star formation is suppressed by more than 50 per cent in the inner regions due to the additional pressure support by quasar feedback, while gas is driven from the inner region towards the outer region of the haloes. As a result, the average gas density is 50 per cent lower in the inner region and 10 per cent higher in the outer region in the simulation, compared to a similar simulation with no quasar feedback. Gas pressure is also higher in the outer region, while temperature and entropy are enhanced in the inner region. The total group gas fraction in the two simulations generally differs by less than 10 per cent. We also find a small change of the total thermal Sunyaev–Zeldovich distortion, leading to 10 per cent changes in the microwave angular power spectrum at angular scales below 2 arcmin.
REFERENCES
-
Allen S. W.,
Schmidt R. W.,
Fabian A. C., 2002, MNRAS, 334, L11
10.1046/j.1365-8711.2002.05601.x Google Scholar
- Allen S. W., Schmidt R. W., Ebeling H., Fabian A. C., Van Speybroeck L., 2004, MNRAS, 353, 457
- Bhattacharya S., Kosowsky A., 2007, ApJ, 659, L83
- Bialek J. J., Evrard A. E., Mohr J. J., 2001, ApJ, 555, 597
- Bondi H., 1952, MNRAS, 112, 195
- Bondi H., Hoyle F., 1944, MNRAS, 104, 273
- Borgani S., Governato F., Wadsley J., Menci N., Tozzi P., Quinn T., Stadel J., Lake G., 2002, MNRAS, 336, 409
- Borgani S. et al., 2004, MNRAS, 348, 1078
- Chatterjee S., Kosowsky A., 2007, ApJ, 661, L113
- Croston J. H., Hardcastle M. J., Birkinshaw M., 2005, MNRAS, 357, 279
- DeDeo S., Spergel D. N., Trac H., 2005, preprint (0511060)
- Di Matteo T., Croft R. A. C., Springel V., Hernquist L., 2003, ApJ, 593, 56
- Di Matteo T., Springel V., Hernquist L., 2005, Nat, 433, 604
- Di Matteo T., Colberg J., Springel V., Hernquist L., Sijacki D., 2008, ApJ, 676, 33
- Eke V. R., Navarro J. F., Frenk C. S., 1998, ApJ, 503, 569
- Ettori S., 2003, MNRAS, 344, L13
- Ettori S., Fabian A. C., 1999, MNRAS, 305, 834
- Ettori S. et al., 2004, MNRAS, 354, 111
- Ettori S., Dolag K., Borgani S., Murante G., 2006, MNRAS, 365, 1021
- Evrard A. E., 1990, ApJ, 363, 349
- Evrard A. E., 1997, MNRAS, 292, 289
- Fabian A. C. et al., 2000, MNRAS, 318, L65
- Finoguenov A., Reiprich T. H., Boumlhringer H., 2001, A&A, 368, 749
- Fowler J. W. et al., 2007, Appl. Opt., 46, 3444
- Frenk C. S. et al., 1999, ApJ, 525, 554
- Heinz S., Choi Y., Reynolds C. S., Begelman M. C., 2002, ApJ, 569, L79
- Hernandez-Monteagudo C., Verde L., Jimenez R., Spergel D. N., 2006, ApJ, 643, 598
- Hernquist L., Springel V., 2003, MNRAS, 341, 1253
- Hoyle F., Lyttleton R. A., 1939, Proc. Cambridge Philos. Soc., 35, 405
- Jetha N. N., Ponman T. J., Hardcastle M. J., Croston J., 2007, MNRAS, 376, 193
- Kaiser N., 1991, ApJ, 383, 104
- Katz N., Weinberg D. H., Hernquist L., 1996, ApJS, 105, 19
- Kay S. T., Thomas P. A., Theuns T., 2003, MNRAS, 343, 608
- Kay S. T., Thomas P. A., Jenkins A., Pearce F. R., 2004, MNRAS, 355, 1091
- Khalatyan A., Cattaneo A., Schramm M., Gottloeber S., Steinmetz M., Wisotzki L., 2008, MNRAS, 387, 13
- Komatsu E., Seljak U., 2002, MNRAS, 336, 1256
- Kosowsky A., 2006, New Astron. Rev., 50, 969
- Lubin L. M., Cen R., Bahcall N. A., Ostriker J. P., 1996, ApJ, 460, 10
- Maturi M., Moscardini L., Mazzotta P., Dolag K., Tormen G., 2007, A&A, 475, 71
- Metzler C. A., Evrard A. E., 1994, ApJ, 437, 564
- Mohr J. J., Mathiesen B., Evrard A. E., 1999, ApJ, 517, 627
- Mohr J. J., O'Shea B., Evrard A. E., Bialek J., Haiman Z., 2003, Nucl. Phys. B: Proc. Suppl., 124, 63
- Monaghan J. J., 1992, ARA&A, 30, 543
- Muanwong O., Thomas P. A., Kay S. T., Pearce F. R., 2002, MNRAS, 336, 527
- Nagai D., Kravtsov A. V., Vikhlinin A., 2007, ApJ, 668, 1
- Nath B. B., Roychowdhury S., 2002, MNRAS, 333, 145
- Navarro J. F., Frenk C. S., White S. D. M., 1995, MNRAS, 275, 720
- Nulsen P. E. J., McNamara B. R., Wise M. W., David L. P., 2005, ApJ, 628, 629
- Pointecouteau E., Arnaud M., Pratt G. W., 2005, Adv. Space Res., 36, 659
- Ponman T. J., Sanderson A. J. R., Finoguenov A., 2003, MNRAS, 343, 331
- Popesso P., Biviano A., Böhringer H., Romaniello M., Voges W., 2005, A&A, 433, 431
- Roncarelli M., Moscardini L., Borgani S., Dolag K., 2007, MNRAS, 378, 1259
- Ruhl J. et al., 2004, in J. Zmuidzinas, W. S. Holland, S. Withington, eds, Proc. SPIE Vol. 5498, Millimeter and Submillimeter Detectors for Astronomy II. SPIE, Bellingham , p. 11
- Sanderson A. J. R., Ponman T. J., Finoguenov A., Lloyd-Davies E. J., Markevitch M., 2003, MNRAS, 340, 989
- Sanderson A. J. R., Finoguenov A., Mohr J. J., 2005, ApJ, 630, 191
- Scannapieco E., Silk J., Bouwens R., 2005, ApJ, 635, L13
- Scannapieco E., Thacker R. J., Couchman H. M. P., 2008, ApJ, 678, 674
- Sehgal N., Kosowsky A., Holder G., 2005, ApJ, 635, 22
- Sehgal N., Trac H., Huffenberger K., Bode P., 2007, ApJ, 664, 149
- Shakura N. I., Sunyaev R. A., 1973, A&A, 24, 337
- Sijacki D., Springel V., 2006, MNRAS, 366, 397
- Sijacki D., Springel V., Di Matteo T., Hernquist L., 2007, MNRAS, 380, 877
- Spergel D. N. et al., 2003, ApJS, 148, 175
- Springel V., 2005, MNRAS, 364, 1105
-
Springel V.,
Hernquist L., 2003a, MNRAS, 339, 289
10.1046/j.1365-8711.2003.06206.x Google Scholar
- Springel V., Hernquist L., 2003b, MNRAS, 339, 312
- Sunyaev R. A., Zeldovich I. B., 1980, ARA&A, 18, 537
- Tago E., Einasto J., Saar E., Tempel E., Einasto M., Vennik J., Muller V., 2008, A&A, 479, 927
- Thacker R. J., Scannapieco E., Couchman H. M. P., 2006, ApJ, 653, 86
- Valageas P., Silk J., 1999, A&A, 347, 1
- Valdarnini R., 2003, MNRAS, 339, 1117
- Vikhlinin A., Kravtsov A., Forman W., Jones C., Markevitch M., Murray S. S., Van Speybroeck L., 2006, ApJ, 640, 691
- White S. D. M., Navarro J. F., Evrard A. E., Frenk C. S., 1993, Nat, 366, 429
- Willis J. P. et al., 2005, MNRAS, 363, 675