Extinction curves flattened by reverse shocks in supernovae
Corresponding Author
Hiroyuki Hirashita
Centre for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
E-mail: [email protected]Search for more papers by this authorTakaya Nozawa
Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
Search for more papers by this authorTsutomu T. Takeuchi
Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan
Search for more papers by this authorTakashi Kozasa
Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
Search for more papers by this authorCorresponding Author
Hiroyuki Hirashita
Centre for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
E-mail: [email protected]Search for more papers by this authorTakaya Nozawa
Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
Search for more papers by this authorTsutomu T. Takeuchi
Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan
Search for more papers by this authorTakashi Kozasa
Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
Search for more papers by this authorABSTRACT
We investigate the extinction curves of young galaxies in which dust is supplied from Type II supernovae (SNe II) and/or pair instability supernovae (PISNe). Since at high redshift (z > 5), low-mass stars cannot be dominant sources for dust grains, SNe II and PISNe, whose progenitors are massive stars with short lifetimes, should govern the dust production. Here, we theoretically investigate the extinction curves of dust produced by SNe II and PISNe, taking into account reverse shock destruction induced by collision with ambient interstellar medium. We find that the extinction curve is sensitive to the ambient gas density around a SN, since the efficiency of reverse shock destruction strongly depends on it. The destruction is particularly efficient for small-sized grains, leading to a flat extinction curve in the optical and ultraviolet wavelengths. Such a large ambient density as nH≳ 1 cm−3 produces too flat an extinction curve to be consistent with the observed extinction curve for SDSS J1048+4637 at z= 6.2. Although the extinction curve is highly sensitive to the ambient density, the hypothesis that the dust is predominantly formed by SNe at z∼ 6 is still allowed by the current observational constraints. For further quantification, the ambient density should be obtained by some other methods. Finally, we also discuss the importance of our results for observations of high-z galaxies, stressing a possibility of flat extinction curves.
REFERENCES
- Beelen A., Cox P., Benford D. J., Dowell C. D., Kovács A., Bertoldi F., Omont A., Carilli C. L., 2006, ApJ, 642, 694
- Bertoldi F., Carilli C. L., Cox P., Fan X., Strauss M. A., Beelen A., Omont A., Zylka R., 2003, A&A, 406, L55
- Bianchi S., Schneider R., 2007, MNRAS, 378, 973
- Bohren C. F., Huffman D. R., 1983, Absorption and Scattering of Light by Small Particles. Wiley, New York
- Borkowski K. J., Dwek E., 1995, ApJ, 454, 254
- Bromm V., Larson R. B., 2004, ARA&A, 42, 79
- Cazaux S., Tielens A. G. G. M., 2004, ApJ, 604, 222
- Chen S. L., Li A., Wei D. M., 2006, ApJ, 647, L13
- Dorschner J., Begemann B., Henning Th., Jaeger C., Mutschke H., 1995, A&A, 300, 503
- Dunne L., Eales S., Ivison R., Morgan H., Edmunds M., 2003, Nat, 424, 285
- Dwek E., Galliano F., Jones A. P., 2007, ApJ, 662, 927
- Edo O., 1983, PhD Dissertation, Univ. Arizona
-
Edward D. F., 1985, in
E. D. Palik, ed., Handbook of Optical Constants of Solids. Academic Press,
San Diego
,
USA
, p. 547
10.1016/B978-0-08-054721-3.50029-0 Google Scholar
- Ellison S. L., Hall P. B., Lira P., 2005, AJ, 130, 1345
- Falco E. E. et al., 1999, ApJ, 523, 617
- Fall S. M., Pei Y. C., McMahon R. G., 1989, ApJ, 341, L5
- Fryer C. K., Woosley S. E., Heger A., 2001, ApJ, 550, 372
-
Gehrz R. D., 1989, in
L. J. Allamandola,
A. G. G. M. Tielens, eds, Proc. IAU Symp. 135, Interstellar Dust. Kluwer,
Dordrecht
, p. 445
10.1007/978-94-009-2462-8_39 Google Scholar
- Heger A., Woosley S. E., 2002, ApJ, 567, 532
- Hines D. C. et al., 2004, ApJS, 154, 290
- Hirashita H., Ferrara A., 2002, MNRAS, 337, 921
- Hirashita H., Nozawa T., Kozasa T., Ishii T. T., Takeuchi T. T., 2005, MNRAS, 357, 1077 (H05)
- Jones A. P., Tielens A. G. G. M., Hollenbach D. J., 1996, ApJ, 469, 740
- Kitayama T., Yoshida N., Susa H., Umemura M., 2004, ApJ, 613, 631
- Kozasa T., Hasegawa H., Nomoto K., 1989, ApJ, 344, 325
- Kozasa T., Hasegawa H., Nomoto K., 1991, A&A, 249, 474
-
Ledoux C.,
Petitjean P.,
Srianand R., 2003, MNRAS, 346, 209
10.1046/j.1365-2966.2003.07082.x Google Scholar
- Maiolino R., Oliva E., Ghinassi F., Pedani M., Mannucci F., Mujica R., Juarez Y., 2004a, A&A, 420, 889
- Maiolino R., Schneider R., Oliva E., Bianchi S., Ferrara A., Mannucci F., Pedani M., Roca Sogorb M., 2004b, Nat, 431, 533
- Mathis J. S., 1990, ARA&A, 28, 37
- Meikle W. P. S. et al., 2007, ApJ, 665, 608
- Morgan H. L., Dunne L., Eales S. A., Ivison R. J., Edmunds M. G., 2003, ApJ, 597, L33
- Moseley S. H., Dwek E., Glaccum W., Graham J. R., Loewenstein R. F., 1989, Nat, 340, 697
- Muñoz J. A., Falco E. E., Kochanek C. S., McLeod B. A., Mediavilla E., 2004, ApJ, 605, 614
- Murphy M. T., Liske J., 2004, MNRAS, 354, L31
- Nakamura F., Umemura M., 2001, ApJ, 548, 19
- Nozawa T., Kozasa T., Umeda H., Maeda K., Nomoto K., 2003, ApJ, 598, 785 (N03)
- Nozawa T., Kozasa T., Habe A., 2006, ApJ, 648, 435
- Nozawa T., Kozasa T., Habe A., Dwek E., Umeda H., Tominaga N., Maeda K., Nomoto K., 2007, ApJ, 666, 955 (N07)
- Omukai K., Tsuribe T., Schneider R., Ferrara A., 2005, ApJ, 626, 627
- Pettini M. H., Smith L. J., Hunstead R. W., King D. L., 1994, ApJ, 426, 79
-
Philipp H. R., 1985, in
E. D. Palik, ed., Handbook of Optical Constants of Solids. Academic Press,
San Diego
, p. 719
10.1016/B978-0-08-054721-3.50039-3 Google Scholar
-
Piller H., 1985, in
E. D. Palik, ed., Handbook of Optical Constants of Solids. Academic Press,
San Diego
, p. 571
10.1016/B978-0-08-054721-3.50030-7 Google Scholar
- Priddey R. S., Isaak K. G., McMahon R. G., Robson E. I., Pearson C. P., 2003, MNRAS, 344, L74
- Rho J. et al., 2008, ApJ, 673, 271
- Robson I., Priddey R. S., Isaak K. G., McMahon R. G., 2004, MNRAS, 351, L29
- Roessler D. M., Huffman D. R., 1991, in E. D. Palik, ed., Handbook of Optical Constants of Solids II. Academic Press, San Diego , p. 919
- Schneider R., Ferrara A., Salvaterra R., Omukai K., Bromm V., 2003, Nat, 422, 869
- Schneider R., Ferrara A., Salvaterra R., 2004, MNRAS, 351, 1379
- Semenov D., Henning Th., Helling C., Ilgner M., Sedlmayr E., 2003, A&A, 410, 611
- Stratta G., Maiolino R., Fiore F., D'Elia V., 2007, ApJ, 661, L9
- Sugerman B. E. K. et al., 2006, Sci, 313, 196
- Takeuchi T. T., Hirashita H., Ishii T. T., Hunt L. K., Ferrara A., 2003, MNRAS, 43, 839
- Takeuchi T. T., Ishii T. T., Nozawa T., Kozasa T., Hirashita H., 2005, MNRAS, 362, 592
- Todini P., Ferrara A., 2001, MNRAS, 325, 726
- Toon O. B., Pollack J. B., Khare B. N., 1976, J. Geophys. Res., 81, 5733
- Umeda H., Nomoto K., 2002, ApJ, 565, 385
- Vladilo G., 2002, A&A, 391, 407
- Willott C. J. et al., 2007, AJ, 134, 2435
- Zuo L., Beaver E. A., Burbidge E. M., Cohen R. D., Junkkarinen V. T., Lyons R. W., 1997, ApJ, 477, 568