Dark matter annihilation in substructures revised
Corresponding Author
Lidia Pieri
Istituto Nazionale di Astrofisica – Osservatorio di Padova, Vicolo dell'Osservatorio 5, 35122 Padova, Italy
Istituto Nazionale di Fisica Nucleare – Sezione di Padova, Via Marzolo 8, 35131 Padova, Italy
E-mail: [email protected]Search for more papers by this authorGianfranco Bertone
Institut d'Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris, France
Search for more papers by this authorEnzo Branchini
Department of Physics, Università di Roma Tre, Via della Vasca Navale 84, 00146, Rome, Italy
Search for more papers by this authorCorresponding Author
Lidia Pieri
Istituto Nazionale di Astrofisica – Osservatorio di Padova, Vicolo dell'Osservatorio 5, 35122 Padova, Italy
Istituto Nazionale di Fisica Nucleare – Sezione di Padova, Via Marzolo 8, 35131 Padova, Italy
E-mail: [email protected]Search for more papers by this authorGianfranco Bertone
Institut d'Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris, France
Search for more papers by this authorEnzo Branchini
Department of Physics, Università di Roma Tre, Via della Vasca Navale 84, 00146, Rome, Italy
Search for more papers by this authorABSTRACT
Upcoming γ-ray satellites will search for Dark Matter (DM) annihilations in Milky Way substructures (or ‘clumps’). The prospects for detecting these objects strongly depend on the assumptions made on the distribution of DM in substructures, and on the distribution of substructures in the Milky Way halo. By adopting simplified, yet rather extreme, prescriptions for these quantities, we compute the number of sources that can be detected with upcoming experiments such as GLAST, and show that, for the most optimistic particle physics setup (mχ= 40 GeV and annihilation cross-section σv= 3 × 10−26 cm3 s−1), the result ranges from zero to approximately 100 sources, all with mass above 105 M⊙. However, for a fiducial DM candidate with mass mχ= 100 GeV and σv= 10−26 cm3 s−1, at most a handful of large mass substructures can be detected at 5σ, with a one-year exposure time, by a GLAST-like experiment. Scenarios where micro-clumps (i.e. clumps with mass as small as 10−6 M⊙) can be detected are severely constrained by the diffuse γ-ray background detected by EGRET.
REFERENCES
- Ando S., Komatsu E., 2006, Phys. Rev. D, 73, 3521
-
Baltz E. A.,
Briot C.,
Salati P.,
Tailler R.,
Silk J., 2000, Phys. Rev. D, 61, 023514
10.1103/PhysRevD.61.023514 Google Scholar
- Baltz E. A., Battaglia M., Peskin M. E., Wizansky T., 2006a, Phys. Rev. D, 74, 103521
- Baltz E. A., Taylor J. E., Wai L. L., 2006b, ApJ, in press (0610731)
- Berezinsky V. R., Gurevich A. V., Zybin K. P., 1992, Phys. Lett. B, 294, 221
- Berezinsky V., Dokuchaev V., Eroshenko Y., 2006, Phys. Rev. D, 73, 063504
- Bergström L., Ullio P., 1997, Nucl. Phys. B, 504, 27
- Bergström L., 2000, Rep. Prog. Phys., 63, 793
- Bergström L., Hooper D., 2006, Phys. Rev. D, 73, 063510
- Bergström L., Ullio P., Buckley J. H., 1998, Astropart. Phys., 9, 137
- Bergström L., Edsjö J., Ullio P., 2001, Phys. Rev. Lett., 87, 25
- Bergström L., Bringmann T., Eriksson M, Gustafsson M., 2005a, J. Cosmol. Astropart. Phys., 0504, 004
- Bergström L., Bringmann T., Eriksson M, Gustafsson M., 2005b, Phys. Rev. Lett., 94, 131301
- Bergström L., Bringmann T., Eriksson M, Gustafsson M., 2005c, Phys. Rev. Lett., 95, 241301
- Bertone G., 2006, Phys. Rev. D, 73, 103519
- Bertone G., Merritt D., 2005, Phys. Rev. D, 72, 103502
- Bertone G., Hooper D., Silk J., 2005a, Phys. Rep., 405, 279
- Bertone G., Zentner A. R., Silk J., 2005b, Phys. Rev. D, 72, 103517
- Brun P., Bertone G., Lavalle J., Salati P., Taillet R., 2007, Phys. Rev. D, 76, 083506
-
Bullock J.,
Kolatt T. S.,
Sigad Y.,
Somerville R. S.,
Kravtsov A. V.,
Klypin A. A.,
Primack J. R.,
Dekel A., 2001, MNRAS, 321, 559 (B01)
10.1046/j.1365-8711.2001.04068.x Google Scholar
- Calcaneo-Roldan C., Moore B., 2000, Phys. Rev. D, 62, 123005
- Colafrancesco S., Profumo S., Ullio P., 2006, A&A, 455, 21
- Diemand J., Moore B., Stadel J., 2004, MNRAS, 352, 535
- Diemand J., Moore B., Stadel J., 2005, Nat, 433, 389 (DMS05)
- Diemand J., Kuhlen M., Madau P., 2006, ApJ, 649, 1
- Diemand J., Kuhlen M., Madau P., 2007a, ApJ, 657, 262
- Diemand J., Kuhlen M., Madau P., 2007b, ApJ, 667, 859
- Eke V. R., Navarro J. F., Steinmetz M., 2001, ApJ, 554, 114 (ENS01)
- Evans N. W., Ferrer F., Sarkar S., 2004, Phys. Rev. D, 69, 123501
- Fornengo N., Pieri L., Scopel S., 2004, Phys. Rev. D, 70, 103529
- Fornasa M., Taoso M., Bertone G., 2007, preprint (0703757)
- Gao L., White S. D. M., Jenkins A., Frenk C. S., Springel V., 2005, MNRAS, 363, 379
- Gondolo P., Silk J., 1999, Phys. Rev. Lett., 83, 1719
- Gondolo P., Edsjo J., Ullio P., Bergström L., Schelke M., Baltz E. A., 2004, J. Cosmol. Astropart. Phys., 0407, 008
- Gounaris G. J., Layssac J., Porfyriadis P. I., Renard F. M., 2004, Phys. Rev. D, 69, 075007
- Green A. M., Hofmann S., Schwarz D. J., 2004, MNRAS, 353, L23
- Green A. M., Hofmann S., Schwarz D. J., 2005, J. Cosmol. Astropart. Phys., 8, 3
- Horiuchi S., Ando S., 2006, Phys. Rev. D, 74, 103504
- Jenkins A., Frenk C. S., White S. D. M., Colberg J. M., Cole S., Evrard A. E., Couchman H. H. P., Toshida N., 2001, MNRAS, 321, 372
- Kazantzidis S., Hayer L., Mastropietro C., Diemand J., Stadel J., Moore B., 2004, ApJ, 608, 663
- Koushiappas S. M., 2006, Phys. Rev. Lett., 97, 191301
- Koushiappas S. M., Zentner A. R., Walker T. P., 2004, Phys. Rev. D, 69, 043501
- Merritt D., Milosavljević M., Verde L., Jimenez R., 2002, Phys. Rev. Lett., 88, 191301
- Moore B., Calcánes-Roldán C., Stadel J., Quinn T., Lake G., Ghigna S., Governato F., 2001, Phys. Rev. D, 64, 063508
- Moore B., Diemand J., Stadel J., Quinn T., 2005, preprint (0502213)
- Muñoz C., 2004, Int. J. Mod. Phys. A, 19, 3093
- Navarro J. F., Frenk C. S., White S. D., 1996, ApJ, 462, 563 (NFW)
-
Nojiri M. M.,
Polesello G.,
Tovey D. R., 2006, J. High Energy Phys., 0603, 063
10.1088/1126-6708/2006/03/063 Google Scholar
- Oda T., Totani T., Nagashima M., 2005, ApJ, 633, L65
- Pieri L., Branchini E., 2004, Phys. Rev. D, 69, 043512
- Pieri L., Branchini E., Hofmann S., 2005, Phys. Rev. Lett., 95, 211301
- Reed D., Governato F., Quinn T., Gardner J., Stadel J., Lake G., 2005, MNRAS, 359, 1537
- Sreekumar P. et al., 1998, ApJ, 494, 523
- Strigari L., Koushiappas S., Bullock J., Kaplinghat M., 2007, Phys. Rev. D, 75, 083526
- Stoher F., White S. D. M., Springel V., Tormen G., Yoshida N., 2003, MNRAS, 345, 1313
- Tasitsiomi A., Gaskins J., Olinto A. V., 2004, Astropart. Phys., 21, 637
-
Tegmark M.
et al., 2006, Phys. Rev. D, 74, 123507
10.1103/PhysRevD.74.123507 Google Scholar
- Tyler C., 2002, Phys. Rev. D, 66, 023509
- Ullio P., Bergström L., 1998, Phys. Rev. D, 57, 1962
- Ullio P., Zhao H., Kamionkowski M., 2001, Phys. Rev. D, 64, 043504
- Zhao H., Hooper D., Angus G. W., Taylor J. E., Silk J., 2007, ApJ, in press (0508215)