Probing the submillimetre number counts at f850 μm < 2 mJy
Corresponding Author
K. K. Knudsen
Argelander Institute for Astronomy, University of Bonn, Auf dem Hügel 71, D-53121 Bonn, Germany
E-mail: [email protected]Search for more papers by this authorP. P. Van Der Werf
Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, the Netherlands
Search for more papers by this authorJ.-P. Kneib
Observatoire Midi-Pyrénées, UMR5572, 14 Avenue Edouard Belin, 31000 Toulouse, France
Caltech, Astronomy, 105-24, Pasadena, CA 91125, USA
OAMP, Laboratoire d'Astrophysique de Marseille, traverse du Siphon, 13012 Marseille, France
Search for more papers by this authorCorresponding Author
K. K. Knudsen
Argelander Institute for Astronomy, University of Bonn, Auf dem Hügel 71, D-53121 Bonn, Germany
E-mail: [email protected]Search for more papers by this authorP. P. Van Der Werf
Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, the Netherlands
Search for more papers by this authorJ.-P. Kneib
Observatoire Midi-Pyrénées, UMR5572, 14 Avenue Edouard Belin, 31000 Toulouse, France
Caltech, Astronomy, 105-24, Pasadena, CA 91125, USA
OAMP, Laboratoire d'Astrophysique de Marseille, traverse du Siphon, 13012 Marseille, France
Search for more papers by this authorABSTRACT
We have conducted a submillimetre mapping survey of faint, gravitationally lensed sources, where we have targeted 12 galaxy clusters and additionally the New Technology Telescope (NTT) Deep Field. The total area surveyed is 71.5 arcmin2 in the image plane; correcting for gravitational lensing, the total area surveyed is 40 arcmin2 in the source plane for a typical source redshift z≈ 2.5. In the deepest maps, an image plane depth of 1σ rms ∼0.8 mJy is reached. This survey is the largest survey to date to reach such depths. In total 59 sources were detected, including three multiply imaged sources. The gravitational lensing makes it possible to detect sources with flux density below the blank field confusion limit. The lensing-corrected fluxes range from 0.11 to 19 mJy. After correcting for multiplicity, there are 10 sources with fluxes <2 mJy of which seven have submJy fluxes, doubling the number of such sources known. Number counts are determined below the confusion limit. At 1 mJy, the integrated number count is ∼104 deg−2, and at 0.5 mJy it is ∼2 × 104 deg−2. Based on the number counts, at a source plan flux limit of 0.1 mJy, essentially all of the 850-μm background emission has been resolved. The dominant contribution (>50 per cent) to the integrated background arises from sources with fluxes S850 between 0.4 and 2.5 mJy, while the bright sources S850 > 6 mJy contribute only 10 per cent.
REFERENCES
- Allen S. W., Fabian A. C., Johnstone R. M., White D. A., Daines S. J., Edge A. C., Stewart G. C., 1993, MNRAS, 262, 901
-
Allen S. W.,
Schmidt R. W.,
Fabian A. C., 2002, MNRAS, 335, 256
10.1046/j.1365-8711.2002.05554.x Google Scholar
- Archibald E. N., Wagg J. W., Jenness T., 2000, SCD System Note 2.2 (http://www.jach.hawaii.edu/JACdocs/JCMT/SCD/SN/002.2/)
- Arnouts S., D'Odorico S., Cristiani S., Zaggia S., Fontana A., Giallongo E., 1999, A&A, 341, 641
- Barger A. J., Cowie L. L., Sanders D. B., 1999, ApJ, 518, L5
- Barnard V. E., Vielva P., Pierce-Price D. P. I., Blain A. W., Barreiro R. B., Richer J. S., Qualtrough C., 2004, MNRAS, 352, 961
- Blain A. W., 2001, in S. Cristiani, A. Renzini, R. E. Williams, eds, Deep Fields SCUBA Deep Fields and Source Confusion. Springer, Berlin , p. 129
-
Blain A. W.,
Smail I.,
Ivison R. J.,
Kneib J.-P., 1999a, MNRAS, 302, 632
10.1046/j.1365-8711.1999.02178.x Google Scholar
- Blain A. W., Kneib J.-P., Ivison R. J., Smail I., 1999b, ApJ, 512, L87
- Borys C., Chapman S., Halpern M., Scott D., 2003, MNRAS, 344, 385
- Borys C., Scott D., Chapman S., Halpern M., Nandra K., Pope A., 2004a, MNRAS, 355, 485
- Borys C. et al., 2004b, MNRAS, 352, 759
- Broadhurst T. et al., 2005, ApJ, 621, 53
- Carlberg R. G., Yee H. K. C., Ellingson E., Abraham R., Gravel P., Morris S., Pritchet C. J., 1996, ApJ, 462, 32
- Cayón L. et al., 2000, MNRAS, 315, 757
- Chapman S. C. et al., 2000, MNRAS, 319, 318
- Chapman S. C., Scott D., Borys C., Fahlman G. G., 2002, MNRAS, 330, 92
- Chapman S. C., Blain A. W., Ivison R. J., Smail I. R., 2003, Nat, 422, 695
- Chapman S. C., Blain A. W., Smail I., Ivison R. J., 2005, ApJ, 622, 772
- Cohen J. G., Kneib J.-P., 2002, ApJ, 573, 524
- Condon J. J., 1974, ApJ, 188, 279
- Coppin K., Halpern M., Scott D., Borys C., Chapman S., 2005, MNRAS, 357, 1022
- Coppin K. et al., 2006, MNRAS, 372, 1621
- Cowie L. L., Barger A. J., Kneib J.-P., 2002, AJ, 123, 2197
- Dannerbauer H., Lehnert M. D., Lutz D., Tacconi L., Bertoldi F., Carilli C., Genzel R., Menten K., 2002, ApJ, 573, 473
- Dannerbauer H., Lehnert M. D., Lutz D., Tacconi L., Bertoldi F., Carilli C., Genzel R., Menten K. M., 2004, ApJ, 606, 664
- Eales S., Lilly S., Webb T., Dunne L., Gear W., Clements D., Yun M., 2000, AJ, 120, 2244
- Edge A. C., Ivison R. J., Smail I., Blain A. W., Kneib J.-P., 1999, MNRAS, 306, 599
- Ellis R., Santos M. R., Kneib J.-P., Kuijken K., 2001, ApJ, 560, L119
- Fixsen D. J., Dwek E., Mather J. C., Bennett C. L., Shafer R. A., 1998, ApJ, 508, 123
-
Förster Schreiber N. M.
et al., 2006, AJ, 131, 1891
10.1086/497293 Google Scholar
-
Franx M.,
Illingworth G. D.,
Kelson D. D.,
Van Dokkum P. G.,
Tran K.-V., 1997, ApJ, 486, L75
10.1086/310844 Google Scholar
- Franx M. et al., 2000, The Messenger, 99, 20
- Garrett M. A., Knudsen K. K., Van Der Werf P. P., 2005, A&A, 431, L21
- Gehrels N., 1986, ApJ, 303, 336
- Govoni F., Feretti L., Giovannini G., Böhringer H., Reiprich T. H., Murgia M., 2001, A&A, 376, 803
- Högbom J. A., 1974, A&AS, 15, 417
- Hogg D. W., 2001, AJ, 121, 1207
- Holland W. S. et al., 1999, MNRAS, 303, 659
- Hughes D. H. et al., 1998, Nat, 394, 241
- Jenness T., Lightfoot J. F., 1998, in R. Albrecht, R. N. Hook, H. A. Bushouse, eds, ASP Conf. Ser. Vol. 145, Astronomical Data Analysis Software and Systems VII Reducing SCUBA Data at the James Clerk Maxwell Telescope. Astron. Soc. Pac., San Francisco , p. 216
- King L. J., Clowe D. I., Schneider P., 2002, A&A, 383, 118
- Kneib J. P., Mellier Y., Fort B., Mathez G., 1993, A&A, 273, 367
- Kneib J.-P., Ellis R. S., Smail I., Couch W. J., Sharples R. M., 1996, ApJ, 471, 643
- Kneib J.-P., Van Der Werf P. P., Kraiberg Knudsen K., Smail I., Blain A., Frayer D., Barnard V., Ivison R., 2004, MNRAS, 349, 1211
- Kneib J.-P., Neri R., Smail I., Blain A., Sheth K., Van Der Werf P., Knudsen K. K., 2005, A&A, 434, 819
- Knudsen K. K., Van Der Werf P. P., Jaffe W., 2003, A&A, 411, 343
- Knudsen K. K. et al., 2005, ApJ, 632, L9
- Knudsen K. K. et al., 2006, MNRAS, 368, 487
- Komatsu E., Kitayama T., Suto Y., Hattori M., Kawabe R., Matsuo H., Schindler S., Yoshikawa K., 1999, ApJ, 516, L1
- Limousin M. et al., 2007, ApJ, 668, 643
- Maloney P. R. et al., 2005, ApJ, 635, 1044
- McNamara B. R., Jannuzi B. T., Sarazin C. L., Elston R., Wise M., 1999, ApJ, 518, 167
- Metcalfe L. et al., 2003, A&A, 407, 791
- Peletier R. F., Davies R. L., Illingworth G. D., Davis L. E., Cawson M., 1990, AJ, 100, 1091
- Pello R., Le Borgne J. F., Sanahuja B., Mathez G., Fort B., 1992, A&A, 266, 6
- Proust D., Cuevas H., Capelato H. V., Sodré L., Jr, ToméLehodey B., Le Fèvre O., Mazure A., 2000, A&A, 355, 443
- Puget J.-L., Abergel A., Bernard J.-P., Boulanger F., Burton W. B., Desert F.-X., Hartmann D., 1996, A&A, 308, L5
- Santos M. R., Ellis R. S., Kneib J.-P., Richard J., Kuijken K., 2004, ApJ, 606, 683
- Sawicki M., Webb T. M. A., 2005, ApJ, 618, L67
-
Scott S. E.
et al., 2002, MNRAS, 331, 817
10.1046/j.1365-8711.2002.05193.x Google Scholar
- Scott S. E., Dunlop J. S., Serjeant S., 2006, MNRAS, 370, 1057
- Serjeant S. et al., 2003, MNRAS, 344, 887
- Sheth K., Blain A. W., Kneib J.-P., Frayer D. T., Van Der Werf P. P., Knudsen K. K., 2004, ApJ, 614, L5
- Smail I., Ivison R. J., Blain A. W., 1997, ApJ, 490, L5
-
Smail I.,
Ivison R. J.,
Blain A. W.,
Kneib J.-P., 2002, MNRAS, 331, 495
10.1046/j.1365-8711.2002.05203.x Google Scholar
- Smith E. P., Heckman T. M., Illingworth G. D., 1990, ApJ, 356, 399
- Smith G. P., Kneib J.-P., Smail I., Mazzotta P., Ebeling H., Czoske O., 2005, MNRAS, 359, 417
- Tran K.-V. H., Kelson D. D., Van Dokkum P., Franx M., Illingworth G. D., Magee D., 1999, ApJ, 522, 39
-
Van Der Werf P. P.,
Knudsen K. K.,
Labbé I.,
Franx M., 2001, in
J. D. Lowenthal,
D. H. Hughes, eds, Deep Millimeter Surveys: Implications for Galaxy Formation and Evolution Can Dusty Lyman Break Galaxies Produce the Submillimeter Counts and Background?
Lessons from Lensed Lyman Break Galaxies
. p. 103
10.1142/9789812811738_0017 Google Scholar
- Van Dokkum P. G. et al., 2004, ApJ, 611, 703
- Wang W.-H., Cowie L. L., Barger A. J., 2006, ApJ, 647, 74
- Webb T. M. et al., 2003a, ApJ, 582, 6
- Webb T. M. et al., 2003b, ApJ, 587, 41
- Webb T. M. A., Brodwin M., Eales S., Lilly S. J., 2004, ApJ, 605, 645
- Webb T. M. A., Yee H. K. C., Ivison R. J., Hoekstra H., Gladders M. D., Barrientos L. F., Hsieh B. C., 2005, ApJ, 631, 187
- White D. A., Fabian A. C., Johnstone R. M., Mushotzky R. F., Arnaud K. A., 1991, MNRAS, 252, 72
- White D. A., Jones C., Forman W., 1997, MNRAS, 292, 419
- Wu X.-P., Xue Y.-J., 2000, ApJ, 542, 578
- Zabludoff A. I., Huchra J. P., Geller M. J., 1990, ApJS, 74, 1