HDM2 overexpression and focal loss of p14/ARF expression may deregulate the p53 tumour suppressor pathway in meningeal haemangiopericytomas. Study by double immunofluorescence and laser scanning confocal microscopy
J-C Martínez
Department of Pathology (Neuropathology), Services of Neurosurgery
Search for more papers by this authorJ-C Palomino
Department of Pathology (Neuropathology), Services of Neurosurgery
Search for more papers by this authorA Cabello
Department of Pathology (Neuropathology), Services of Neurosurgery
Search for more papers by this authorA G De La Cámara
Research and Epidemiology Unit, University Hospital ‘12 de Octubre’, Madrid, Spain
Search for more papers by this authorJ-R Ricoy
Department of Pathology (Neuropathology), Services of Neurosurgery
Search for more papers by this authorJ-C Martínez
Department of Pathology (Neuropathology), Services of Neurosurgery
Search for more papers by this authorJ-C Palomino
Department of Pathology (Neuropathology), Services of Neurosurgery
Search for more papers by this authorA Cabello
Department of Pathology (Neuropathology), Services of Neurosurgery
Search for more papers by this authorA G De La Cámara
Research and Epidemiology Unit, University Hospital ‘12 de Octubre’, Madrid, Spain
Search for more papers by this authorJ-R Ricoy
Department of Pathology (Neuropathology), Services of Neurosurgery
Search for more papers by this authorAbstract
Aims : To investigate the p53 pathway in meningeal haemangiopericytomas (MHPCs), p14/ARF, p53 protein expression and two wild-type (wt) p53-induced proteins (HDM2 and p21/WAF1) were studied in 18 MHPCs, 11 primary, four of them recurrent on one, one, two and four occasions.
Methods : Immunohistochemical detection of p14/ARF, p53, p21/WAF1, HDM2 and Ki67 proliferative index (PI) protein expression.
Results : Ki67 index was > 5% in eight out 18 cases (44.4%). The PI in recurrent cases increased with neoplastic progression. Simultaneous p53 and wt p53 transactivated gene (p21/WAF, HDM2) expression occurred in all cases. This argues against p53 mutation. HDM2 overexpression was observed in 10 cases (55.5%). Double-immunofluorescence staining and laser scanning confocal microscopy (LSCM) displayed HDM2 and p53 colocalization. This strongly suggests that HDM2 binds and inactivates p53 that could be pathogenic for MHPCs, by a different mechanism than point mutation. p14/ARF expression > 5% was observed in 12 cases (66.6%). A normal (diffuse) pattern of expression was seen in 13 cases (72.2%). Focal loss of expression was observed in five patients (27.7%): three primary cases and two recurrences. Therefore, p14/ARF down-regulation may also contribute to the development of MHPC.
Conclusion : HDM2 overexpression, sometimes combined with focal loss of p14/ARF expression, may play a pathogenic role in MHPCs.
References
- 1 Nigro JM, Baker SJ, Preisinger AC et al. Mutations in the p53 gene occur in diverse human tumour types. Nature 1989; 342; 705–708.DOI: 10.1038/342705a0
- 2 Fritsche M, Haessler C, Brandner G. Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogene 1993; 8; 307–318.
- 3 Hall PA, McKee PH, Menage HD, Dover R, Lane DP. High levels of p53 protein in UV-irradiated normal human skin. Oncogene 1993; 8; 203–207.
- 4 Giannikaki E, Kouvidou C, Tzardi M et al. p53 protein expression in breast carcinomas. Comparative study with the wild type p53 induced proteins mdm2 and p21/waf1. Anticancer Res. 1997; 17; 2123–2127.
- 5 Martinez JC, Mateo M, Sanchez-Beato M et al. MDM2 expression in lymphoid cells and reactive and neoplastic lymphoid tissue. Comparative study with p53 expression. J. Pathol. 1995; 177; 27–34.
- 6 Ono Y, Tamiya T, Ichikawa T et al. Accumulation of wild-type p53 in astrocytomas is associated with increased p21 expression. Acta Neuropathol. (Berl.) 1997; 94; 21–27.DOI: 10.1007/s004010050667
- 7
Sanchez-Beato M,
Piris MA,
Martinez-Montero JC et al.
MDM2 and p21WAF1/CIP1, wild-type p53-induced proteins, are regularly expressed by Sternberg–Reed cells in Hodgkin's disease.
J. Pathol.
1996; 180; 58–64.DOI: 10.1002/(SICI)1096-9896(199609)180:1<58::AID-PATH610>3.3.CO;2-N
10.1002/(SICI)1096-9896(199609)180:1<58::AID-PATH610>3.0.CO;2-W CAS PubMed Web of Science® Google Scholar
- 8
Villuendas R,
Pezzella F,
Gatter K et al.
p21WAF1/CIP1 and MDM2 expression in non-Hodgkin's lymphoma and their relationship to p53 status: a p53+, MDM2–, p21–immunophenotype associated with missense p53 mutations.
J. Pathol.
1997; 181; 51–61.DOI: 10.1002/(SICI)1096-9896(199701)181:1<51::AID-PATH689>3.3.CO;2-E
10.1002/(SICI)1096-9896(199701)181:1<51::AID-PATH689>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 9 El Deiry WS, Tokino T, Velculescu VE et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75; 817–825.
- 10 Stivala LA, Riva F, Cazzalini O, Savio M, Prosperi E. p21 (waf1/cip1)-null human fibroblasts are deficient in nucleotide excision repair downstream the recruitment of PCNA to DNA repair sites. Oncogene 2001; 20; 563–570.DOI: 10.1038/sj.onc.1204132
- 11 Luo Y, Hurwitz J, Massague J. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature 1995; 375; 159–161.DOI: 10.1038/375159a0
- 12 Parker SB, Eichele G, Zhang P et al. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 1995; 267; 1024–1027.
- 13 Wu X, Bayle JH, Olson D, Levine AJ. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 1993; 7; 1126–1132.
- 14 Freedman DA, Levine AJ. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol. Cell Biol. 1998; 18; 7288–7293.
- 15 Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 1995; 83; 993–1000.
- 16 Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA. Role of the INK4a locus in tumor suppression and cell mortality. Cell 1996; 85; 27–37.
- 17 Palmero I, Pantoja C, Serrano M. p19ARF links the tumour suppressor p53 to Ras. Nature 1998; 395; 125–126.DOI: 10.1038/25870
- 18 Zingg JM, Jones PA. Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis. Carcinogenesis 1997; 18; 869–882.
- 19 Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl Acad. Sci. USA 1998; 95; 8292–8297.DOI: 10.1073/pnas.95.14.8292
- 20 Pomerantz J, Schreiber-Agus N, Liegeois NJ et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 1998; 92; 713–723.
- 21 Stott FJ, Bates S, James MC et al. The alternative product from the human CDKN2A locus, p14 (ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 1998; 17; 5001–5014.DOI: 10.1093/emboj/17.17.5001
- 22 Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998; 92; 725–734.
- 23 Brelje TC, Wessendorf MW, Sorenson RL. Multicolor laser scanning confocal immunofluorescence microscopy: practical application and limitations. Meth. Cell Biol. 1993; 38; 97–181.
- 24 Sanchez-Beato M, Camacho FI, Martinez-Montero JC et al. Anomalous high p27/KIP1 expression in a subset of aggressive B-cell lymphomas is associated with cyclin D3 overexpression. p27/KIP1-cyclin D3 colocalization in tumor cells. Blood 1999; 94; 765–772.
- 25 Jääskeläinen J, Luis DN, Paulus W. Haemangiopericytoma. In P Kleihues, WK Cavenee eds. Pathology and genetics of tumours of the central nervous system. Lyon: IARC Press, 2000; 190–192.
- 26 Ono Y, Ueki K, Joseph JT, Louis DN. Homozygous deletions of the CDKN2/p16 gene in dural hemangiopericytomas. Acta Neuropathol. (Berl.) 1996; 91; 221–225.DOI: 10.1007/s004010050419
- 27 Hara M, Aoyagi M, Nagashima G et al. Recurrence in meningeal hemangiopericytomas. Surg. Neurol. 1998; 50; 586–591.DOI: 10.1016/S0090-3019(98)00043-3
- 28 Alen JF, Lobato RD, Gomez PA et al. Intracranial hemangiopericytoma: study of 12 cases. Acta Neurochir. (Wien) 2001; 143; 575–586.DOI: 10.1007/s007010170062
- 29 Garcia JF, Villuendas R, Algara P et al. Loss of p16 protein expression associated with methylation of the p16INK4A gene is a frequent finding in Hodgkin's disease. Lab. Invest. 1999; 79; 1453–1459.
- 30 Geradts J, Kratzke RA, Niehans GA, Lincoln CE. Immunohistochemical detection of the cyclin-dependent kinase inhibitor 2/multiple tumor suppressor gene 1 (CDKN2/MTS1) product p16INK4A in archival human solid tumors: correlation with retinoblastoma protein expression. Cancer Res. 1995; 55; 6006–6011.
- 31 Geradts J, Wilson PA. High frequency of aberrant p16 (INK4A) expression in human breast cancer. Am. J. Pathol. 1996; 149; 15–20.
- 32 Kratzke RA, Greatens TM, Rubins JB et al. Rb and p16INK4a expression in resected non-small cell lung tumors. Cancer Res. 1996; 56; 3415–3420.
- 33 Villuendas R, Sanchez-Beato M, MartineZ. JC et al. Loss of p16/INK4A protein expression in non-Hodgkin's lymphomas is a frequent finding associated with tumor progression. Am. J. Pathol. 1998; 153; 887–897.
- 34 Martinez JC, Piris MA, Sanchez-Beato M et al. Retinoblastoma (Rb) gene product expression in lymphomas. Correlation with Ki67 growth fraction. J. Pathol. 1993; 169; 405–412.
- 35 Fleiss JL. Statistical methods for rates and proportions. New York: Wiley Interscience, 1981.
- 36 Troncone G, Martinez JC, Palombini L et al. Immunohistochemical expression of mdm2 and p21WAF1 in invasive cervical cancer: correlation with p53 protein and high risk HPV infection. J. Clin. Pathol. 1998; 51; 754–760.
- 37 Louis DN, Scheithauer BW, Budka H, Von Deimling A, Kepes JJ. Meningiomas. In P Kleihues, WK Cavenee eds. Pathology and genetics of tumours of the central nervous system. Lyon: IARC Press, 2000; 176–184.
- 38 Barak Y, Juven T, Haffner R, Oren M. mdm2 expression is induced by wild type p53 activity. EMBO J. 1993; 12; 461–468.
- 39 Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res. 1993; 53; 2736–2739.
- 40 Waldman T, Kinzler KW, Vogelstein B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 1995; 55; 5187–5190.
- 41 Zedenius J, Larsson C, Wallin G et al. Alterations of p53 and expression of WAF1/p21 in human thyroid tumors. Thyroid 1996; 6; 1–9.
- 42
Doglioni C,
Pelosio P,
Laurino L et al.
p21/WAF1/CIP1 expression in normal mucosa and in adenomas and adenocarcinomas of the colon: its relationship with differentiation.
J. Pathol.
1996; 179; 248–253.DOI: 10.1002/(SICI)1096-9896(199607)179:3<248::AID-PATH571>3.0.CO;2-6
10.1002/(SICI)1096-9896(199607)179:3<248::AID-PATH571>3.0.CO;2-6 PubMed Web of Science® Google Scholar
- 43 Sheikh MS, Chen YQ, Smith ML, Fornace AJ Jr. Role of p21Waf1/Cip1/Sdi1 in cell death and DNA repair as studied using a tetracycline-inducible system in p53-deficient cells. Oncogene 1997; 14; 1875–1882.DOI: 10.1038/sj.onc.1201004
- 44 Katano H, Masago A, Taki H, Nakatsuka M, Fuse T, Yamada K. p53-independent transient p21 (WAF1/CIP1) mRNA induction in the rat brain following experimental traumatic injury. Neuroreport 2000; 11; 2073–2078.
- 45 Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 1993; 362; 857–860.DOI: 10.1038/362857a0
- 46 Landers JE, Haines DS, Strauss JF III, George DL. Enhanced translation: a novel mechanism of mdm2 oncogene overexpression identified in human tumor cells. Oncogene 1994; 9; 2745–2750.
- 47 Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 1992; 358; 80–83.DOI: 10.1038/358080a0
- 48 Martin K, Trouche D, Hagemeier C, Sorensen TS, La Thangue NB, Kouzarides T. Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein. Nature 1995; 375; 691–694.DOI: 10.1038/375691a0
- 49 Xiao ZX, Chen J, Levine AJ et al. Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 1995; 375; 694–698.DOI: 10.1038/375694a0
- 50 Jones PA, Rideout WM III, Shen JC, Spruck CH, Tsai YC. Methylation, mutation and cancer. Bioessays 1992; 14; 33–36.
- 51 Nakamura M, Sakaki T, Hashimoto H et al. Frequent alterations of the p14 (ARF) and p16 (INK4a) genes in primary central nervous system lymphomas. Cancer Res. 2001; 61; 6335–6339.
- 52 Nakamura M, Watanabe T, Klangby U et al. p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol. 2001; 11; 159–168.
- 53 Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis 2000; 21; 485–495.
- 54 Sherr CJ, Weber JD. The ARF/p53 pathway. Curr. Opin. Genet. Dev. 2000; 10; 94–99.DOI: 10.1016/S0959-437X(99)00038-6
- 55 Garcia JF, Villuendas R, Sanchez-Beato M et al. Nucleolar p14 (ARF) overexpression in Reed–Sternberg cells in Hodgkin's lymphoma: absence of p14(ARF)/Hdm2 complexes is associated with expression of alternatively spliced Hdm2 transcripts. Am. J. Pathol. 2002; 160; 569–578.
- 56 Gazzeri S, Della V, Chaussade L, Brambilla C, Larsen CJ, Brambilla E. The human p19ARF protein encoded by the beta transcript of the p16INK4a gene is frequently lost in small cell lung cancer. Cancer Res. 1998; 58; 3926–3931.
- 57 Newcomb EW, Alonso M, Sung T, Miller DC. Incidence of p14ARF gene deletion in high-grade adult and pediatric astrocytomas. Hum. Pathol. 2000; 31; 115–119.
- 58 Watanabe T, Nakamura M, Yonekawa Y, Kleihues P, Ohgaki H. Promoter hypermethylation and homozygous deletion of the p14ARF and p16INK4a genes in oligodendrogliomas. Acta Neuropathol. (Berl.) 2001; 101; 185–189.
- 59 Xing EP, Nie Y, Song Y et al. Mechanisms of inactivation of p14ARF, p15INK4b, and p16INK4a genes in human esophageal squamous cell carcinoma. Clin. Cancer Res. 1999; 5; 2704–2713.
- 60 Esteller M, Tortola S, Toyota M et al. Hypermethylation-associated inactivation of p14 (ARF) is independent of p16 (INK4a) methylation and p53 mutational status. Cancer Res. 2000; 60; 129–133.
- 61 Korshunov A, Golanov A, Timirgaz V. p14ARF protein (FL-132) immunoreactivity in intracranial ependymomas and its prognostic significance: an analysis of 103 cases. Acta Neuropathol. (Berl.) 2001; 102; 271–277.
- 62 Eads CA, Lord RV, Kurumboor SK et al. Fields of aberrant CpG island hypermethylation in Barrett's esophagus and associated adenocarcinoma. Cancer Res. 2000; 60; 5021–5026.
- 63 Sato F, Harpaz N, Shibata D et al. Hypermethylation of the p14(ARF) gene in ulcerative colitis-associated colorectal carcinogenesis. Cancer Res. 2002; 62; 1148–1151.
- 64 Yarbrough WG, Bessho M, Zanation A, Bisi JE, Xiong Y. Human tumor suppressor ARF impedes S-phase progression independent of p53. Cancer Res. 2002; 62; 1171–1177.
- 65 Eymin B, Karayan L, Seite P et al. Human ARF binds E2F1 and inhibits its transcriptional activity. Oncogene 2001; 20; 1033–1041.DOI: 10.1038/sj.onc.1204220
- 66 Mason SL, Loughran O, La Thangue NB. p14(ARF) regulates E2F activity. Oncogene 2002; 21; 4220–4230.DOI: 10.1038/sj.onc.1205524
- 67 Karayan L, Riou JF, Seite P, Migeon J, Cantereau A, Larsen CJ. Human ARF protein interacts with topoisomerase I and stimulates its activity. Oncogene 2001; 20; 836–848.DOI: 10.1038/sj.onc.1204170
- 68 Fatyol K, Szalay AA. The p14ARF tumor suppressor protein facilitates nucleolar sequestration of hypoxia-inducible factor-1alpha (HIF-1alpha) and inhibits HIF-1-mediated transcription. J. Biol. Chem. 2001; 276; 28421–28429.DOI: 10.1074/jbc.M102847200