Horizontal movements in the eastern Barents Sea constrained by numerical models and plate reconstructions
Susanne J. H. Buiter
Centre for Geodynamics, Geological Survey of Norway, Leiv Eirikssons vei 39, 7491 Trondheim, Norway. E-mail: [email protected]
Search for more papers by this authorCorresponding Author
Trond H. Torsvik
Centre for Geodynamics, Geological Survey of Norway, Leiv Eirikssons vei 39, 7491 Trondheim, Norway. E-mail: [email protected]
Also at: PGP, University of Oslo, 0316 Oslo, Norway, and the School of Geosciences, University of Witwatersrand, WITS 2050, South Africa.Search for more papers by this authorSusanne J. H. Buiter
Centre for Geodynamics, Geological Survey of Norway, Leiv Eirikssons vei 39, 7491 Trondheim, Norway. E-mail: [email protected]
Search for more papers by this authorCorresponding Author
Trond H. Torsvik
Centre for Geodynamics, Geological Survey of Norway, Leiv Eirikssons vei 39, 7491 Trondheim, Norway. E-mail: [email protected]
Also at: PGP, University of Oslo, 0316 Oslo, Norway, and the School of Geosciences, University of Witwatersrand, WITS 2050, South Africa.Search for more papers by this authorSUMMARY
The eastern Barents Sea basins, west of Novaya Zemlya, were mildly inverted between Late Permian and Early Jurassic times, as indicated by mild folds in the basin sediments. Previous studies have suggested that the crustal part of Novaya Zemlya was thrust westward, but the magnitude of this compressive movement is not well known. Our aim is to provide an order-of-magnitude constraint on the amount of shortening associated with the displacement of Novaya Zemlya and inversion of the eastern Barents Sea basins by combining numerical models and plate reconstructions in an iterative process. We use a 2-D finite-element method to model inversion of a pre-defined basin. The total amount of shortening imposed on the models is first constrained by plate reconstructions for the Barents Sea region for the Late Palaeozoic to Early Mesozoic. We assume that the shortening is caused by westward movement of the Siberian plate, but the magnitude of this westward displacement in plate reconstructions is highly uncertain due to the allochthonous nature of the rocks of Novaya Zemlya and the scarcity of palaeomagnetic data in the region. Our models show that shortening localizes in the model basin and at Novaya Zemlya and that westward propagation of deformation is more efficient when the strength of the lower crust is reduced. Part of the movement of the Siberian plate could be accommodated by thrusts at Novaya Zemlya and perhaps in the domain of the Kara Sea at the western margin of the Siberian plate. By comparing the inversion obtained in the numerical models to the inferred inversion structures in the eastern Barents Sea basins we further constrain the amount of shortening that caused the inversion and therewith improve the plate reconstructions for the region. Our models indicate that the westward movement of Novaya Zemlya occurred in the Late Triassic–Early Jurassic (220–190 Ma) and was limited in magnitude to 100–200 km, which is considerably less than previous estimates (500–700 km).
REFERENCES
- Artemieva, I.M. & Mooney, W.D., 2001. Thermal thickness and evolution of Precambrian lithosphere: a global study, J. geophys. Res., 106, 16 387–16 414.
- Baturin, D., Vinogradov, A. & Yunov, A., 1991. Tectonics and hydrocarbon potential of the Barents Megatrough, Multiclient Report, Laboratory of Regional Geodynamics, LARGE International Moscow, Abstract, Am. Ass. of Petr. Geol. Bull., 75(8), 1404.
- Beaumont, C., Fullsack, P. & Hamilton, J., 1992. Erosional control of active compressional orogens, in Thrust Tectonics, pp. 1–19, ed. K.R. McClay, Chapman and Hall, New York .
- Beaumont, C., Kamp, P.J.J., Hamilton, J. & Fullsack, Ph., 1996. The continental collision zone, South Island, New Zealand: comparison of geodynamical models and observations, J. geophys. Res., 101, 3333–3359.
- Bos, B. & Spiers, C.J., 2002. Frictional-viscous flow of phyllosilicate-bearing fault rock: microphysical model and implications for crustal strength profiles, J. geophys. Res., 107, doi:DOI: 10.1029/2001JB000301.
- Brown, D. & Echtler, H., 2005. The Urals, Encyclopedia Geol., 2, 86–95.
- Brun, J.P. & Nalpas, T., 1996. Graben inversion in nature and experiments, Tectonics, 15, 677–687.
- Buchanan, P.G. & McClay, K.R., 1991. Sandbox experiments of inverted listric and planar faults systems, Tectonophysics, 188, 97–115.
- Bugge, T. et al. , 2002. Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, Mar. Petr. Geol, 19, 13–37.
- Buiter, S.J.H. & Pfiffner, O.A., 2003. Numerical models of the inversion of half-graben basins, Tectonics, 22, DOI: doi: 10.1029/2002TC001417.
- Buiter, S.J.H., Babeyko, A.Yu., Ellis, S., Gerya, T.V., Kaus, B.J.P., Kellner, A., Schreurs, G. & Yamada, Y., 2006. The numerical sandbox: comparison of model results for a shortening and an extension experiment, in Analogue and Numerical Modelling of Crustal-Scale Processes, Vol. 253, pp. 29–64, eds S.J.H. Buiter & G. Schreurs, Geol. Soc., Spec. Publ., London .
-
Bungum, H.,
Ritzmann, O.,
Maercklin, N.,
Faleide, J.-I.,
Mooney, W.D. &
Detweiler, S.T., 2005. Three-dimensional model for the crust and upper mantle in the Barents Sea region, EOS, Trans. Am. geophys. Un., 86, 160–161.
10.1029/2005EO160003 Google Scholar
- Byerlee, J., 1978. Friction of rocks, Pageoph., 116, 615–626.
- Cocks, R.L.M. & Torsvik, T.H., 2005. Baltica from the late Precambrian to mid Palaeozoic: the gain and loss of a terranes's identity, Earth-Sci. Rev., 72, 39–66.
- Cocks, R.L.M. & Torsvik, T.H., 2007. Siberia, the wandering northern terrane, and its changing geography through the Palaeozoic, Earth-Sci. Rev., 82, 29–74.
- Cooper, M.A. et al. , 1989. Inversion tectonics—a discussion, in Inversion Tectonics, Vol. 44, pp. 335–347, eds M.A. Cooper & G.D. Williams, Geol. Soc. Spec. Publ.
- Culling, W.E.H., 1960. Analytical theory of erosion, J. Geol., 68, 336–344.
- Dahlen, F.A., 1984. Noncohesive critical coulomb wedges: an exact solution, J. geophys. Res., 89, 10 125–10 133.
- Dahlen, F.A. & Barr, T.D., 1989. Brittle frictional mountain building 1. Deformation and mechanical energy budget, J. geophys. Res., 94, 3906–3922.
- Del Ventisette, C., Montanari, D., Sani, F. & Bonini, M., 2006. Basin inversion and fault reactivation in laboratory experiments, J. Struct. Geol., 28, 2067–2083.
-
Eisenstadt, G. &
Withjack, M.O., 1995. Estimating inversion: results from clay models, in
Basin Inversion, Vol. 88, pp. 119–136, eds
J.G. Buchanan &
P.G. Buchanan, Geol. Soc. Spec. Publ.
10.1144/GSL.SP.1995.088.01.08 Google Scholar
- Fullsack, Ph., 1995. An arbitrary Lagrangian-Eulerian formulation for creeping flows and its application in tectonic models, Geophys. J. Int., 120, 1–23.
- Gee, D.G., 2005. Scandinavian Caledonides (with Greenland), in Encyclopedia of Geology, Vol. 2, pp. 64–74, eds R.C. Selley, L.R.M. Cocks & I.R. Plimer, Elsevier, Amsterdam .
- Gleason, G.C. & Tullis, J., 1995. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell, Tectonophysics, 247, 1–23.
- Hansen, D.L. & Nielsen, S.B., 2003. Why rifts invert in compression, Tectonophysics, 373, 5–24.
- Hansen, D.L., Nielsen, S.B. & Lykke-Andersen, H., 2000. The post-Triassic evolution of the Sorgenfrei-Tornquist Zone—results from thermo-mechanical modelling, Tectonophysics, 328, 245–267.
- Inger, S., Scott, R.A. & Golionko, B.G., 1999. Tectonic evolution of the Taimyr Peninsula, northern Russia: implications for Arctic continental assembly, J. Geol. Soc., Lond., 156, 1069–1072.
- Ivanova, N.M., Sakoulina, T.S. & Roslov, Yu. V., 2006. Deep seismic investigation across the Barents-Kara region and Novozemelskiy Fold Belt (Arctic Shelf), Tectonophysics, 420, 123–140.
-
Johansen, S.E.
et al.
, 1993. Hydrocarbon potential in the Barents Sea region: play distribution and potential, in
Arctic Geology and Petroleum Potential, Vol. 2, pp. 273–320, eds
T.O. Vorren,
E. Bergsager
Ø.A. Dahl-Stamnes,
E. Holter,
B. Johansen,
E. Lie &
T.B. Lund, NPF Spec. Publ.
10.1016/B978-0-444-88943-0.50024-1 Google Scholar
- Koons, P.O., 1990. Two-sided orogen: collision and erosion from the sandbox to the Southern Alps, New Zealand, Geology, 18, 679–682.
-
McClay, K.R., 1995. The geometries and kinematics of inverted fault systems: a review of analogue model studies, in
Basin Inversion, Vol. 88, pp. 97–118, eds
J.G. Buchanan &
P.G. Buchanan, Geol. Soc. Spec. Publ.
10.1144/GSL.SP.1995.088.01.07 Google Scholar
- Mulugeta, G., 1988. Modelling the geometry of Coulomb thrust wedges, J. Struct. Geol., 10, 847–859.
- Natal'in, B.A. & Şengör, A.M.C., 2005. Late Paleozoic to Triassic evolution of the Turan and Skythian platforms: the pre-history of the paleo-Tethyan closure, Tectonophysics, 404, 175–202.
- Nikishin, A.M., Ziegler, P.A., Abbott, D., Brunet, M.-F. & Cloetingh, S., 2002. Permo-Triassic intraplate magmatism and rifting in Eurasia: implication for mantle plumes and mantle dynamics, Tectonophysics, 351, 3–39.
- Northrup, C.J., Royden, L.H. & Burchfiel, B.C., 1995. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia, Geology, 23, 719–722.
- O'Leary, N., White, N., Tull, S., Bashilov, V., Kuprin, V., Natapov, L. & MacDonald, D., 2004. Evolution of the Timan-Pechora and South Barents Sea basins, Geol. Mag., 151, 141–160.
- Otto, S.C. & Bailey, R.J., 1995. Tectonic evolution of the northern Ural Orogen, J. Geol. Soc. Lond., 152, 903–906.
- Panien, M., Schreurs, G. & Pfiffner, O.A., 2005. Sandbox experiments on basin inversion: testing the influence of basin orientation and basin fill, J. Struct. Geol., 27, 433–445.
- Panien, M., Buiter, S.J.H., Schreurs, G. & Pfiffner, O.A., 2006. Inversion of a symmetric basin: insights from a comparison between analogue and numerical experiments, in Analogue and Numerical Modelling of Crustal-Scale Processes, Vol. 253, pp. 253–270, eds S.J.H. Buiter & G. Schreurs, Geol. Soc. Spec. Publ., London .
- Pysklywec, R.N., 2006. Surface erosion control on the evolution of the deep lithosphere, Geology, 34, 225–228.
- Ranalli, G., 1987. Rheology of the Earth, 366 pp., Allen and Unwin Inc. , Winchester , USA .
- Ritzmann, O., Maercklin, N., Faleide, J.I., Bungum, H., Mooney, W.D. & Detweiler, S.T., 2007. A three-dimensional geophysical model of the crust in the Barents Sea region: model construction and basement characterization, Geophys. J. Int., 170, 417–435.
- Roberts, D. & Olovyanishnikov, V., 2004. Structural and tectonic development of the Timanide orogen, in The Neoproterozoic Timanide Orogen of Eastern Baltica, Vol. 30, pp. 47–57, eds D.G. Gee & V. Pease, Geol. Soc., London , Mem .
- Rybacki, E. & Dresen, G., 2000. Dislocation and diffusion creep of synthetic anorthite aggregates, J. geophys. Res., 105, 26 017–26 036.
- Sandiford, M., 1999. Mechanics of basin inversion, Tectonophysics, 305, 109–120.
- Schreurs, G., Hänni, R. & Vock, P., 2001. Four-dimensional analysis of analog models: experiments on transfer zones in fold and thrust belts, Geol. Soc. Am. Mem., 193, 179–190.
- Simpson, G.D.H., 2006. Modelling interactions between fold-thrust belt deformation, foreland flexure and surface mass transport, Basin Res., 18, 125–143.
- Storti, F., Salvini, F. & McClay, K., 2000. Synchronous and velocity-partitioned thrusting and thrust polarity reversal in experimentally produced, doubly-vergent thrust wedges: implications for natural orogens, Tectonics, 19, 379–396.
- Torsvik, T.H. & Andersen, T.B., 2002. The Taimyr fold belt, Arctic Siberia: timing of prefold remagnetisation and regional tectonics, Tectonophysics, 352, 335–348.
- Torsvik, T.H., Gaina, C., Steinberg, M. & Van der Voo, R., 2006. North Atlantic fits with implications for the Barents Sea, in NGU Report 2006.077 (confidential)
- Van der Voo, R., Levashkova, N.M., Skrinnik, L.I., Kara, T.V. & Bazhenov, M.L., 2006. Late orogenic, large-scale rotations in the Tien Shan and adjacent mobile belts in Kyrgyzstan and Kazakhstan, Tectonophysics, 426, 335–360.
- Vernikovsky, V.A., 1996. The geodynamic evolution of the Taimyr folded area, Geol. Pac. Ocean, 12, 691–704.
- Vernikovsky, V.A., 1997. Neoproterozoic and late Paleozoic Taimyr Orogenic and ophiolitic belts, North Asia: a review and models for their formation, Proc. 30th Int. Geol. Congrs., Beijing, China, vol. 7, 121–138.
- Vyssotski, A.V., Vyssotski, V.N. & Nezhdanov, A.A., 2006. Evolution of the West Siberian Basin, Mar. Petr. Geol., 23, 93–126.
- Walderhaug, H.J., Eide, E.A., Scott, R.A., Inger, S. & Golionko, E.G., 2005. Palaeomagnetism and 40Ar/39Ar geochronology from the South Taimyr igneous complex, Arctic Russia: a Middle-Late Triassic magmatic pulse after Siberian flood-basalt volcanism, Geophys. J. Int., 163, 501–517.
- Willett, S.D., 1999. Orogeny and orography: the effects of erosion on the structure of mountain belts, J. geophys. Res., 104, 28 957–28 981.
- Wilson, D.S., 1996. Fastest know spreading on the Miocene Cocos-Pacific plate boundary, Geophys. Res. Lett., 23, 3003–3006.
- Ziegler, P.A., 1989. Evolution of Laurussia: A Study in Late Palaeozoic Plate Tectonics, 102 pp., Kluwer Academic Publishers, Dordrecht , The Netherlands .
- Ziegler, P.A., Cloetingh, S. & Van Wees, J.-D., 1995. Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples, Tectonophysics, 252, 7–59.