Reducing the bias of multitaper spectrum estimates
Corresponding Author
G. A. Prieto
Scripps Institution of Oceanography, University of California San Diego, La Jolla CA 92093 , USA
Now at: Department of Geophysics, Stanford University, Stanford, CA 94305, USA. E-mail: [email protected].Search for more papers by this authorR. L. Parker
Scripps Institution of Oceanography, University of California San Diego, La Jolla CA 92093 , USA
Search for more papers by this authorD. J. Thomson
Mathematics and Statistics Department, Queens University, Kingston ON, Canada
Search for more papers by this authorF. L. Vernon
Scripps Institution of Oceanography, University of California San Diego, La Jolla CA 92093 , USA
Search for more papers by this authorR. L. Graham
Department of Computer Science and Engineering, University of California San Diego, La Jolla CA 92093 , USA
Search for more papers by this authorCorresponding Author
G. A. Prieto
Scripps Institution of Oceanography, University of California San Diego, La Jolla CA 92093 , USA
Now at: Department of Geophysics, Stanford University, Stanford, CA 94305, USA. E-mail: [email protected].Search for more papers by this authorR. L. Parker
Scripps Institution of Oceanography, University of California San Diego, La Jolla CA 92093 , USA
Search for more papers by this authorD. J. Thomson
Mathematics and Statistics Department, Queens University, Kingston ON, Canada
Search for more papers by this authorF. L. Vernon
Scripps Institution of Oceanography, University of California San Diego, La Jolla CA 92093 , USA
Search for more papers by this authorR. L. Graham
Department of Computer Science and Engineering, University of California San Diego, La Jolla CA 92093 , USA
Search for more papers by this authorSUMMARY
The power spectral density of geophysical signals provides information about the processes that generated them. We present a new approach to determine power spectra based on Thomson's multitaper analysis method. Our method reduces the bias due to the curvature of the spectrum close to the frequency of interest. Even while maintaining the same resolution bandwidth, bias is reduced in areas where the power spectrum is significantly quadratic. No additional sidelobe leakage is introduced. In addition, our methodology reliably estimates the derivatives (slope and curvature) of the spectrum. The extra information gleaned from the signal is useful for parameter estimation or to compare different signals.
REFERENCES
- Abercrombie, R.E., 1995. Earthquake source scaling relationships from − 1 to 5 ML using seismograms recorded at 2.5-km depth, J. geophys. Res., 100, 24 015–24 036.
- Berger, J., Davis, P. & Ekström, G., 2004. Ambient earth noise: a survey of the global seismographic network, J. geophys. Res., 109, B11307.
- Bronez, T.P., 1992. On the performance advantage of multitaper spectral analysis, IEEE Trans. Sig. Proc., 40(12), 2941–2946.
- Brune, J.N., 1970. Tectonic stress and seismic shear waves from earthquakes, J. geophys. Res., 75, 4997–5009.
- Chappellaz, J., Barnola, J.M., Raynaud, D., Korotkevich, Y.S. & Lorius, C., 1990. Ice-core record of atmospheric methane over the past 160 000 yr, Nature, 345, 127–131.
- Constable, S. & Constable, C., 2004. Observing geomagnetic induction in magnetic satellite measurements and associated implications for mantle conductivity, Geochem. Geophys. Geosyst., 5, Q01006.
- Cramér, H., 1940. On the theory of stationary random processes, Ann. Math., 41, 215–230.
- Denison, D.G.T., Walden, A.T., Balogh, A. & Forsyth, J., 1999. Multitaper testing of spectral lines and the detection of the solar rotation frequency and its harmonics, Appl. Statist., 48, 427–439.
- Doob, J.L., 1952. Stochastic Processes, John Wiley and Sons, New York .
- Gilbert, F., 1970. Excitation of normal modes of the Earth by earthquake sources, Geophys. J. Royal Astr. Soc., 22, 223–226.
- Goff, J.A. & Jordan, T.H., 1988. Stochastic modeling of seafloor morphology: inversion of sea beam data for second-order statistics, J. geophys. Res., 93, 13 589–13 608.
- Harris, F., 1978. On the use of windows for harmonic analysis with the discrete Fourier transform, Proc. IEEE, 66, 51–83.
- Hough, S.E. & Field, E.H., 1996. On the coherence of ground motion in the San Fernando Valley, Bull. seism. Soc. Am., 86(6), 1724–1736.
- Korte, M., Constable, C.G. & Parker, R.L., 2002. Revised magnetic power spectrum of the oceanic crust, J. geophys. Res., 107(B9), 2205.
- Lawson, C.L. & Hanson, R.J., 1974. Solving Least Squares Problems, Prentice Hall, Englewood Cliffs , NJ .
- Lees, J., 1995. Reshaping spectrum estimates by removing periodic noise: application to seismic spectral ratios, Geophys. Res. Lett., 22(4), 513–516.
- Macdonald, K.C. et al ., 1992. The East Pacific Rise and its flanks 8-18N: history of segmentation, propagation and spreading direction based on SeaMARC II and SeaBeam Studies, Mar. geophys. Res., 14, 299–344.
- Mason, J. & Handscomb, D., 2003. Chebyshev Polynomials, Chapman & Hall/CRC Press, Boca Raton , FL .
- Park, J.J., 1992. Envelope estimation for quasi-periodic geophysical signals in noise: a multitaper approach, in Statistics in the Enviroment & Earth Sciences, pp 189–219, eds A.T. Walden & P. Guttorp, Edward Arnold, London .
- Park, J., Lindberg, C.R. & Thomson, D.J., 1987a. Multiple-taper spectral analysis of terrestrial free oscillations. Part I, Geophys. J. Royal Astr. Soc., 91, 755–794.
- Park, J., Lindberg, C.R. & Vernon, F.L., 1987b. Multitaper spectral analysis of high-frequency seismograms, J. geophys. Res., 92, 12 675–12 684.
-
Percival, D.B. &
Walden, A.T., 1993. Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques, Cambridge Univ. Press,
Cambridge
,
UK
.
10.1017/CBO9780511622762 Google Scholar
- Priestley, M.B., 1981. Spectral Analysis and Time Series, I. & II, Academic Press, London , UK .
- Prieto, G.A., Shearer, P.M., Vernon, F.L. & Kilb, D., 2004. Earthquake source scaling and self-similarity estimation from stacking P and S spectra, J. geophys. Res., 109, B08310.
- Prieto, G.A., Thomson, D.J., Vernon, F.L., Shearer, P.M. & Parker, R.L., 2007. Confidence intervals for earthquake source parameters, Geophys. J. Int., 168, 1227–1234.
- Riedel, K.S. & Sidorenko, A., 1995. Minimum bias multiple taper spectral estimation, IEEE Trans. Signal Process., 43, 188–195.
- Riedel, K.S., Sidorenko, A. & Thomson, D.J., 1993. Spectral estimation of plasma fluctuations I. Comparison of methods, Phys. Plasma, 1(3), 485–500.
-
Schuster, A., 1898. On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena, Terr. Magn, 3, 13–41.
10.1029/TM003i001p00013 Google Scholar
- Simons, F.J., Zuber, M.T. & Korenaga, J., 2000. Isostatic response of the Australian lithosphere: estimation of effective elastic thickness and anisotropy using multitaper spectral analysis, J. geophys. Res., 105(B8), 19 163–19 184.
- Slepian, D., 1978. Prolate spheroidal wavefunctions, Fourier analysis, and uncertainty V: the discrete case, Bell System Tech. J., 57, 1371–1429.
- Taylor, J.R., 1997. An Introduction to Error Analysis, University Science Books , Sausalito , CA .
- Thomson, D.J., 1982. Spectrum estimation and harmonic analysis, Proc. IEEE, 70, 1055–1096.
- Thomson, D.J., 1990. Quadratic-inverse spectrum estimates: applications to paleoclimatology, Phys. Trans. R. Soc. Lond. A, 332, 539–597.
- Thomson, D.J., 1994. An overview of multiple-window and quadratic-inverse spectrum estimation methods, in ICASSP - 94, Vol. VI, pp. 185–194.
- Vernon, F.L., Fletcher, J., Haar, L., Chave, A. & Sembera, E., 1991. Coherence of seismic body waves from local events as measured by a small aperture array, J. geophys. Res., 96, 11 981–11 996.