Post-shock temperatures in minerals
Susan A. Raikes
Seismological Laboratory, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
Geophysikalisches Institut, Universität Karlsruhe, Hertzstrasse 16, Bau 42, 7500 Karlsruhe-West (21), W. Germany.
Search for more papers by this authorThomas J. Ahrens
Seismological Laboratory, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
Search for more papers by this authorSusan A. Raikes
Seismological Laboratory, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
Geophysikalisches Institut, Universität Karlsruhe, Hertzstrasse 16, Bau 42, 7500 Karlsruhe-West (21), W. Germany.
Search for more papers by this authorThomas J. Ahrens
Seismological Laboratory, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
Search for more papers by this authorAbstract
Summary. An experimental technique has been developed for the measurement of post-shock temperatures in a wide variety of materials, including those of geophysical interest such as silicates. The technique uses an infrared radiation detector to determine the brightness temperature of samples shocked to pressures in the range 5 to ∼ 30 GPa; in these experiments measurements have been made in two wavelength ranges (4.5 to 5.75 μm; 7 to 14 μm). Reproducible results, with the temperatures in the two wavelength bands generally in excellent agreement, have been obtained for aluminium-2024 (10.5 to 33 GPa; 125 to 260°C), stainless steel-304 (11.5 to 50 GPa; 80 to 350°C), crystalline quartz (5.0 to 21.5 GPa; 80 to 250°C), forsterite (7.5 to 28.0 GPa; ∼ 30 to 160°C) and Bamble bronzite (6.0 to 26.0 GPa; ∼ 30 to 225°C).
These results are generally much higher at low pressures (where they may even be in excess of the calculated shock temperatures) than the values calculated assuming a hydrodynamic rheology and isentropic release parallel to the Hugoniot but tend towards them at higher pressures. In aluminium-2024, the theoretical post-shock temperatures, assuming a fluid-like rheology, are 35 to 218°C, for the pressure range 10.5 to 33 GPa. However, the results are in considerably better agreement with values calculated assuming elasto-plastic behaviour (80 to 270°C) which probably also causes the high measured temperatures for stainless steel. In forsterite the measured values ranged from 65°C at 9.6 GPa (there was no detectable rise at 7.5 GPa) to 156° at 28.0 GPa, whereas the ‘hydrodynamic values’ were 30 to 120°C. Values obtained for quartz were in excellent agreement with those calculated by Mashimo et al. using release adiabat data. It is concluded that release adiabat data should be used, wherever available, for calculations of residual temperature, and that adequate descriptions of the shock and release processes in minerals need to be more complex than generally assumed.
References
- Ahrens, T. J., Anderson, D. L. & Ringwood, A. E., 1969. Equations of state and crystal structures of high-pressure phases of shocked silicates and oxides, Rev. Geophys., 7, 667–707.
- Ahrens, T. J. & Gaffney, E. S., 1971. Dynamic compression of enstatite, J. geophys. Res., 76, 5504–5513.
- Ahrens, T. J., Gust, W. H. & Royce, E. B., 1968. Material strength effect on the shock compression of alumina, J. Appl. Phys., 39, 4610–4616.
- Ahrens, T. J., Lower, J. H. & Lagus, P. L., 1971. Equation of state of forsterite, J. geophys. Res., 76, 518–528.
-
Ahrens, T. J. &
O'Keefe, J. D., 1972. Shock melting and vaporization of lunar rocks and minerals, The Moon, 4, 214–249.
10.1007/BF00562927 Google Scholar
- Ahrens, T. J., O'Keefe, D. & Gibbons, R. V., 1973. Shock compression of a recrystallized anorthositic rock from Apollo 15, Proc. Lunar Sci. Conf. 4th, pp. 2575–2590.
- Ahrens, T. J. & Petersen, C. F., 1969. Shock wave data and the study of the earth, in The Application of Modem Physics to the Earth and Planetary Interiors, ed. S. K. Runcom, pp. 449–461, Wiley-Interscience.
- Ahrens, T. J., Petersen, C. F. & Rosenberg, J. T., 1969b. Shock compression of feldspars, J. geophys. Res., 74, 2727–2746.
- Al'tschuler, L. V., 1965. Use of shock waves in high pressure physics, Sov. Phys. Usp., 8, 52–91, (English translation).
- Anderson, O. L., Schreiber, E., Liebermann, R. C. & Soga, N., 1968. Some elastic constant data on minerals relevant to geophysics, Rev. Geophys., 6, 491–524.
- Asay, J. R., 1977. Effect of shock-wave rise time on material ejection from aluminium surfaces, Sandia Lab. Rep. SAND 77–0731..
- Asay, J. R., Mix, L. P. & Perry, F. C., 1976. Ejection of material from shocked surfaces, Appl. Phys. Lett., 29, 284–287.
- Buettner, K. J. K. & Kern, C. D., 1965. The determination of infrared emissivities of terrestrial surfaces, J. geophys. Res., 70, 1329–1337.
- Burns, R. G., 1970. Mineralogical Applications of Crystal Field Theory, Chapter 4, pp. 49–77, Cambridge University Press.
- Chung, D. H., 1971. Equations of state of pyroxenes in the (Mg, Fe)SiO, system, EOS Trans. Am. geophys. Un., 52, 919 (abstract).
- Davies, G. F., 1974. Limits on the constitution of the lower mantle, Geophys. J. R. astr. Soc., 38, 479–503.
- Duvall, G. E. & Fowles, G. R., 1963. Shock waves, Chapter 9, in High Pressure Physics and Chemistry, Volume II, pp 209–291, ed. R. S. Bradley, Academic Press, London .
- Foltz, J. F. & Grace, F. I., 1969. Theoretical Hugoniot stress-temperature-strain states for aluminium and copper, J. Appl. Phys., 40, 4195–4199.
- Fowles, G. R., 1961. Shock wave compression of hardened and annealed 2024 aluminium, J. Appl. Phys., 32, 1475–1487.
- Fowles, G. R., 1967. Dynamic compression of quartz, J. geophys. Res., 72, 5729–5742.
- Frisillo, A. L. & Barsch, G. R., 1972. Measurement of single-crystal elastic constants of bronzite as a function of pressure and temperature, J. geophys. Res., 77, 6360–6384.
- Gibbons, R. V., 1974. Experimental effects of high shock pressure on materials of geological and geophysical interest, PhD thesis, California Institute of Technology.
- Gibbons, R. V. & Ahrens, T. J., 1971. Shock metamorphism of silicate glasses, J. geophys. Res., 76, 5489–5498.
- Goto, T., Rossman, G. R. & Ahrens, T. J., 1979. Absorption spectroscopy in solids under shock compression, Proc. 6th AIRAPT International High Pressure Conference, Boulder , Colorado , in press.
- Grady, D. E., 1977. Processes occurring in shock wave compression of rocks and minerals, in High Pressure Research: Applications in Geophysics, pp. 359–435, eds, M. H. Manghnani & Syun-Ibi Akimoto, Academic Press, New York .
- Grady, D. E., Murri, W. J. & Fowles, G. R., 1974. Quartz to stishovite: wave propagation in the mixed phase region, J. geophys. Res., 79, 332–338.
- Graham, E. K., Jr & Barsch, G. R., 1967. Elastic constants of single-crystal forsterite as a function of temperature and pressure, J. geophys. Res., 74, 5949–5960.
- J.A.N.A.F. Thermochemical Tables, 1971. Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 37, 1141pp.
- Kieffer, S. W. & Delany, J. M., 1979. Isentropic decompression of fluids from crustal and mantle pressures, J. geophys. Res., 84, 1611–1620.
- King, D. A. & Ahrens, T. J., 1976. Shock compression of ilmenite, J. geophys. Res., 81, 931–935.
- King, P. J., Cotgrove, D. F. & Slate, P. M. B., 1968. Infra-red method of estimating the residual temperature of shocked metal plates, in Behaviour of Dense Media under High Dynamic Pressures, pp. 513–520, ed. J. Berger, London , Gordon & Breech.
- Kumazawa, M., 1969. The elastic constants of single-crystal orthopyroxene, J. geophys. Res., 74, 5973–5980.
- Kumazawa, M. & Anderson, O. L., 1969. Elastic moduli, pressure derivatives and temperature derivatives of single-crystal olivine and single-crystal forsterite, J. geophys. Res., 74, 5961–5972.
- Lee, E. H. & Liu, D. T., 1967. Finite-strain elastic-plastic theory with application to plane-wave analysis, J. Appl. Phys., 38, 19–27.
- Lee, E. H. & Wierzbicki, T., 1967. Analysis of the propagation of plane elastic-plastic waves at finite strain, J. Appl. Mech., 34, 931–936.
- Lyon, R. J. P., 1965. Analysis of rocks by spectral infrared emission (8 to 25 microns), Econ. Geol., 60, 715–736.
- Lyzenga, G. A. & Ahrens, T. J., 1978. The relation between the shock-induced free surface velocity and the post-shock specific volume of solids, J. Appl Phys., 49, 201–204.
- Mashimo, T., Nishii, K., Soma, T., Sawaoka, A. & Saito, S., 1979. Some physical properties of amorphous SiO2 synthesized by shock compression of α-quartz, Phys. Chem. Min., submitted for publication.
- McQueen, R. G., 1968. Shock wave data and equations of state, in Seismic Coupling, ed. G. Simmons, Advanced Research Projects Agency Meeting.
- McQueen, R. G. & Marsh, S. P., 1960. Equations of state for nineteen metallic elements from shock-wave measurements to two megabars, J. Appl. Phys., 31, 1253–1269.
-
McQueen, R. G.,
Marsh, S. P.,
Taylor, J. W.,
Fritz, J. N. &
Carter, W. J., 1970. The equation of state of solids from shock wave studies, Chapter VII, in
High-Velocity Impact Phenomena, pp. 293–417, ed. R. Kinslow,
London
Academic Press. (See also Appendices C, D, E, pp. 518–520, 521–529, 530–568.).
10.1016/B978-0-12-408950-1.50012-4 Google Scholar
- Murr, Lawrence E., 1975. Interfacial Phenomena in Metals and Alloys, p. 326, 348, 349, London , Addison Wesley.
- Nielson, F. W., Benedick, W. B., Brooks, W. P., Graham, R. A. & Anderson, G. W., 1961. Electrical and optical effects of shock waves in crystalline quartz, in Coll. Int. Centre National Recherche Sci., No. 109, pp. 391–414, Les Ondes de Detonation.
- Raikes, S. A., 1978. Post-shock temperatures: their experimental determination, calculation and implications, PhD thesis. Part II, California Institute of Technology.
- Reimold, W.-V. & Stuffier, D., 1978. Experimental shock metamorphism of dunitic rocks, Lunar planet. Sci., IX, 955–957, Lunar and Planetary Institute, Houston .
- Schneider, E. & Stilp, A., 1977. Measurement of temperature distributions within steel targets impacted by hypervelocity projectiles: method and preliminary results, paper presented at the 7th International Congress on Instrumentation in Aerospace Simulation Facilities, RMCS, Shrivenham, England , September.
- Schulien, S., Hornemann, V. & Stöffler, D., 1978. Electrical conductivity of dunite during shock compression from 12.5 to 45 GPa, Geophys. Res. Lett., 5, 345–348.
- Smith, C. S., 1958. Metallographic studies of metals after explosive shock, Trans. Metall. Soc. of AIME, 212, 574–589.
- Smith, J. V. & Mason, B., 1970. Pyroxene-garnet transformation in Coorara meteorite, Science, 168, 832–833.
- Stöffler, D., 1971. Progressive metamorphism and classification of shocked and brecciated crystalline rocks at impact craters, J. geophys. Res., 76, 5541–5551.
- Stöffler, D., 1972. Deformation and transformation of rock-forming minerals by natural and experimental shock processes. I. Behaviour of minerals under shock compression, Fortschr. Miner., 49, 50–113.
- Stöffler, D., 1974. Deformation and transformation of rock-forming minerals by natural and experimental shock processes. II. Physical properties of shocked minerals, Fortschr. Miner., 51, 256–289.
- Taylor, J. W., 1963. Residual temperatures in shocked copper, J. Appl. Phys., 34, 2727–2731.
- Touloukian, Y. S. & DeWitt, D. P., 1972. Thermal radiative properties, non-metallic solids, T.P.R.C. Data Series, 8, Plenum Press.
- Touloukian, Y. S. & Ho, C. Y., 1972. Thermal radiative properties of metallic elements and alloys, T.P.R.C. Data Series, 7, Plenum Press.
- Urtiew, P. A., 1974. Effect of shock loading on transparency of sapphire crystals, J. Appl. Phys., 45, 3490–3493.
- Urtiew, P. A. & Grover, R., 1973. Radiation temperature in solids under shock loading, Fifth Symposium on Temperature, its Measurement and Control in Science and Industry, Nat. Bur. Stand., 4, 677–684, (Am. Inst. Phys.).
- Urtiew, P. A. & Grover, R., 1974. Temperature deposition caused by shock interactions with material interfaces, J. Appl. Phys., 45, 140–145.
- Van Holle, W. G. & Trimble, J. J., 1976. Temperature measurement of shocked copper plates and shaped charge jets by two-colour IR radiometry, J. Appl. Phys., 47, 2391–2394.
- Wackerle, J., 1962. Shock compression of quartz, J. Appl. Phys., 33, 922–937.
- Walsh, J. M. & Christian, R. H., 1955. Equation of state of metals from shock wave measurements, Phys. Rev., 97, 1544–1556.