Cholesterol-lowering strategies reduce vascular LRP1 overexpression induced by hypercholesterolaemia
Vicenta Llorente-Cortes
Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
Search for more papers by this authorLaura Casani
Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
CIBEROBN-Instituto Salud Carlos III (L.B.), Barcelona, Spain
Search for more papers by this authorRoi Cal
Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
Search for more papers by this authorAlbert Llenas
Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
Search for more papers by this authorOriol Juan-Babot
Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
Search for more papers by this authorSandra Camino-López
Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
Search for more papers by this authorJudith Sendra
Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
Search for more papers by this authorLina Badimon
Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
CIBEROBN-Instituto Salud Carlos III (L.B.), Barcelona, Spain
Search for more papers by this authorVicenta Llorente-Cortes
Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
Search for more papers by this authorLaura Casani
Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
CIBEROBN-Instituto Salud Carlos III (L.B.), Barcelona, Spain
Search for more papers by this authorRoi Cal
Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
Search for more papers by this authorAlbert Llenas
Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
Search for more papers by this authorOriol Juan-Babot
Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
Search for more papers by this authorSandra Camino-López
Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
Search for more papers by this authorJudith Sendra
Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
Search for more papers by this authorLina Badimon
Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
CIBEROBN-Instituto Salud Carlos III (L.B.), Barcelona, Spain
Search for more papers by this authorAbstract
Eur J Clin Invest 2011; 41 (10): 1087–1097
Background Low density lipoprotein receptor-related protein (LRP1) plays a key role on vascular functionality and is upregulated by hypercholesterolemia and hypertension. To investigate the effect of cholesterol-lowering interventions on vascular LRP1 over expression and whether simvastatin influences LRP1 expression.
Material and methods Male New Zealand rabbits were recruited into various groups, one group was fed a normal chow diet for 28 days (control group, n = 6), other group (n = 24) was fed a hypercholesterolemic diet (HC), six rabbits were euthanized at day 28 to test the capacity of HC diet to induce early atherosclerosis and the rest at day 60 (n = 18) after receiving either HC diet (HC group, n = 6), HC diet with simvastatin (2·5 mg/kg.day) (HC+simv group, n = 6), or a normal chow diet (NC group, n = 6) for the last 32 days.
Results High-cholesterol diet raised vascular LRP1 concomitantly with increased lipid, VSMC and macrophage content in the arterial intima. Simvastatin and return to normocholesterolemic diet significantly reduced systemic cholesterol levels and vascular lipid content. Interestingly, these interventions also downregulate LRP1 overexpression in the vascular wall although to a different extent (HC+simv: 75 ± 3·6%vs NC: 50 ± 3·5% versus, P = 0·002). Immunohistochemistry studies showed that LRP1 diminushion was associated to a reduction in the number of intimal VSMC in HC+simv.group. Simvastatin per se did not exert any significant effect on LRP1 expression in rabbit aortic smooth muscle cells (rSMC).
Conclusions Our results demonstrate that cholesterol-lowering interventions exerted down regulatory effects on vascular LRP1 over expression induced by hypercholesterolemia and that simvastatin did not influence LRP1 expression beyond its cholesterol-lowering effects.
References
- 1 Grodos D, Tonglet R. Scandinavian simvastatin study (4S). Lancet 1994; 344: 8939–40.
- 2 Simes RJ. Prospective meta-analysis of cholesterol-lowering studies: the Prospective Pravastatin Pooling (PPP) Project and the Cholesterol Treatment Trialists (CTT) Collaboration. Am J Cardiol 1995; 76: 122C–6C.
- 3 Shepherd J. The West of Scotland Coronary Prevention Study: a trial of cholesterol reduction in Scottish men. Am J Cardiol 1995; 76: 113C–7C.
- 4 Brown MS, Herz J, Goldstein JL. LDL-receptor structure. Calcium cages, acid baths and recycling receptors. Nature 1997; 388: 629–30.
- 5 Davignon J. Beneficial cardiovascular pleiotropic effects of statins. Circulation 2004; 109: III39–43.
- 6 Paoletti R, Bellosta S, Bernini F. Pharmacological control of phagocyte function: inhibition of cholesterol accumulation. Ann N Y Acad Sci 1997; 832: 322–9.
- 7 Hofnagel O, Luechtenborg B, Weissen-Plenz G, Robenek H. Statins and foam cell formation impact on LDL oxidation and uptake of oxidized lipoproteins via scavenger receptors. Biochim Biophys Acta 2007; 1771: 1117–24.
- 8 Hiltunen TP, Luoma JS, Nikkari T, Ylä-Herttuala S. Expression of LDL receptor, VLDL receptor, LDL receptor-related protein, and scavenger receptor in rabbit atherosclerotic lesions: marked induction of scavenger receptor and VLDL receptor expression during lesion development. Circulation 1998; 97: 1079–86.
- 9 Moestrup SK, Gliemann J, Pallesen G. Distribution of the alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein in human tissues. Cell Tissue Res 1992; 269: 375–82.
- 10 Luoma J, Hiltunen T, Särkioja T, Moestrup SK, Gliemann J, Kodama T et al. Expression of alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein and scavenger receptor in human atherosclerotic lesions. J Clin Invest 1994; 93: 2014–21.
- 11 Llorente-Cortés V, Otero-Viñas M, Berrozpe M, Badimon L. Intracellular lipid accumulation, low-density lipoprotein receptor-related protein expression, and cell survival in vascular smooth muscle cells derived from normal and atherosclerotic human coronaries. Eur J Clin Invest 2004; 34: 182–90.
- 12 Llorente-Cortés V, Otero-Viñas M, Hurt-Camejo E, Martínez-González J, Badimon L. Human coronary smooth muscle cells internalize versican-modified LDL through LDL receptor-related protein and LDL receptors. Arterioscler Thromb Vasc Biol 2002; 22: 387–93.
- 13 Llorente-Cortés V, Royo T, Juan-Babot O, Badimon L. Adipocyte differentiation-related protein is induced by LRP1-mediated aggregated LDL internalization in human vascular smooth muscle cells and macrophages. J Lipid Res 2007; 48: 2133–40.
- 14 Llorente-Cortés V, Otero-Viñas M, Camino-López S, Costales P, Badimon L. Cholesteryl esters of aggregated LDL are internalized by selective uptake in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2006; 26: 117–23.
- 15 Llorente-Cortés V, Badimon L. LDL receptor-related protein and the vascular wall: implications for atherothrombosis. Arterioscler Thromb Vasc Biol 2005; 25: 497–504.
- 16 Gaultier A, Salicioni AM, Arandjelovic S, Gonias SL. Regulation of the composition of the extracellular matrix by low density lipoprotein receptor-related protein-1: activities based on regulation of mRNA expression. J Biol Chem 2006; 281: 7332–40.
- 17 Hu K, Yang J, Tanaka S, Gonias SL, Mars WM, Liu Y. Tissue-type plasminogen activator acts as a cytokine that triggers intracellular signal transduction and induces matrix metalloproteinase-9 gene expression. J Biol Chem 2006; 281: 2120–7.
- 18 Padmasekar M, Nandigama R, Wartenberg M, Schlüter KD, Sauer H. The acute phase protein alpha2-macroglobulin induces rat ventricular cardiomyocyte hypertrophy via ERK1,2 and PI3-kinase/Akt pathways. Cardiovasc Res 2007; 75: 118–28.
- 19 Wang S, Herndon ME, Ranganathan S, Godyna S, Lawler J, Argraves WS et al. Internalization but not binding of thrombospondin-1 to low density lipoprotein receptor-related protein-1 requires heparan sulfate proteoglycans. J Cell Biochem 2004; 91: 766–76.
- 20 Espirito Santo SM, Pires NM, Boesten LS, Gerritsen G, Bovenschen N, van Dijk KW et al. Hepatic low-density lipoprotein receptor-related protein deficiency in mice increases atherosclerosis independent of plasma cholesterol. Blood 2004; 103: 3777–82.
- 21 Hu L, Boesten LS, May P, Herz J, Bovenschen N, Huisman MV et al. Macrophage low-density lipoprotein receptor-related protein deficiency enhances atherosclerosis in ApoE/LDLR double knockout mice. Arterioscler Thromb Vasc Biol 2006; 26: 2710–5.
- 22 Boucher P, Gotthardt M, Li WP, Anderson RG, Herz J. LRP: role in vascular wall integrity and protection from atherosclerosis. Science 2003; 300: 329–32.
- 23 Llorente-Cortés V, Otero-Viñas M, Sánchez S, Rodríguez C, Badimon L. Low density lipoprotein up-regulates low density lipoprotein receptor-related protein expression in vascular smooth muscle cells. Possible involvement of sterol regulatory element binding protein-2-dependent mechanism. Circulation 2002; 106: 31104–10.
- 24 Llorente-Cortés V, Costales P, Bernués J, Camino-Lopez S, Badimon L. Sterol regulatory element-binding protein-2 negatively regulates low density lipoprotein receptor-related protein transcription. J Mol Biol 2006; 359: 950–60.
- 25 Costales P, Aledo R, Vérnia S, Das A, Shah VH, Casado M et al. Selective role of sterol regulatory element binding protein isoforms in aggregated LDL-induced vascular low density lipoprotein receptor-related protein-1 expression. Atherosclerosis 2010; 213: 458–68.
- 26 Pocathikorn A, Taylor RR, Mamotte CDS. Atorvastatin increases expression of low-density lipoprotein receptor mRNA in human circulating mononuclear cells. Clin Exp Pharmacol Physiol 2010; 37: 471–6.
- 27 Kim S, Kim CH, Vaziri ND. Upregulation of hepatic LDL receptor-related protein in nephrotic syndrome: response to statin therapy. Am J Physiol Endocrinol Metab 2005; 288: E813–7.
- 28 Corti R, Fuster V, Fayad ZA, Worthley SG, Helft G, Smith D et al. Lipid lowering by simvastatin induces regression of human atherosclerotic lesions: two years’ follow-up by high-resolution noninvasive magnetic resonance imaging. Circulation 2002; 106: 2884–7.
- 29 Corti R, Fuster V, Fayad ZA, Worthley SG, Helft G, Chaplin WF et al. Effects of aggressive versus conventional lipid-lowering therapy by simvastatin on human atherosclerotic lesions: a prospective, randomized, double-blind trial with high-resolution magnetic resonance imaging. J Am Coll Cardiol 2005; 46: 106–12.
- 30 Verschuren L, Kleemann R, Offerman EH, Szalai AJ, Emeis SJ, Princen HM et al. Effect of low dose atorvastatin versus diet-induced cholesterol lowering on atherosclerotic lesion progression and inflammation in apolipoprotein E*3-Leiden transgenic mice. Arterioscler Thromb Vasc Biol 2005; 25: 161–7.
- 31 Kleemann R, Princen HM, Emeis JJ, Jukema JW, Fontijn RD, Horrevoets AJ et al. Rosuvastatin reduces atherosclerosis development beyond and independent of its plasma cholesterol-lowering effect in APOE*3-Leiden transgenic mice: evidence for antiinflammatory effects of rosuvastatin. Circulation 2003; 108: 1368–74.
- 32 Chandrasekar B, Mummidi S, Mahimainathan L, Patel DN, Bailey SR, Imam SZ et al. Interleukin-18-induced human coronary artery smooth muscle cell migration is dependent on NF-kappaB- and AP-1-mediated matrix metalloproteinase-9 expression and is inhibited by atorvastatin. J Biol Chem 2006; 281: 15099–109.
- 33 Meyers CD, Tannock LR, Wight TN, Chait A. Statin-exposed vascular smooth muscle cells secrete proteoglycans with decreased binding affinity for LDL. J Lipid Res 2003; 44: 2152–60.
- 34 Mandosi E, Fallarino M, Gatti A, Carnovale A, Rossetti M, Lococo E et al. Atorvastatin downregulates monocyte CD36 expression, nuclear NFkappaB and TNFalpha levels in type 2 diabetes. J Atheroscler Thromb 2010; 17: 539–45.
- 35 Koh KK, Sakuma I, Quon MJ. Differential metabolic effects of distinct statins. Atherosclerosis 2010; [Epub ahead of print].
- 36 Rodrigues Díez R, Rodrigues-Díez R, Lavoz C, Rayego-Mateos S, Civantos E, Rodríguez-Vita J et al. Statins inhibit angiotensin II/Smad Pathway and related vascular fibrosis, by a TGF-β-independent process. PLoS ONE 2010; 5: e14145.
- 37 Araújo FA, Rocha MA, Mendes JB, Andrade SP. Atorvastatin inhibits inflammatory angiogenesis in mice through down regulation of VEGF, TNF-alpha and TGF-beta1. Biomed Pharmacother 2010; 64: 29–34.
- 38 Ceschin DG, Sánchez MC, Chiabrando GA. Insulin induces the low density lipoprotein receptor-related protein 1 (LRP1) degradation by the proteasomal system in J774 macrophage-derived cells. J Cell Biochem 2009; 106: 372–80.
- 39 Laatsch A, Merkel M, Talmud PJ, Grewal T, Beisiegel U, Heeren J. Insulin stimulates hepatic low density lipoprotein receptor-related protein 1 (LRP1) to increase postprandial lipoprotein clearance. Atherosclerosis 2009; 204: 105–11.
- 40 Sendra J, Llorente-Cortés V, Costales P, Huesca-Gómez C, Badimon L. Angiotensin II upregulates LDL receptor-related protein (LRP1) expression in the vascular wall: a new pro-atherogenic mechanism of hypertension. Cardiovasc Res 2008; 78: 581–9.
- 41 Eslami P, Johnson MF, Terzakaryan E, Chew C, Harris-White ME. TGF beta2-induced changes in LRP-1/T beta R-V and the impact on lysosomal A beta uptake and neurotoxicity. Brain Res 2008; 1241: 176–87.
- 42 Hofmann SM, Zhou L, Perez-Tilve D, Greer T, Grant E, Wancata L et al. Adipocyte LDL receptor-related protein-1 expression modulates postprandial lipid transport and glucose homeostasis in mice. J Clin Invest 2007; 117: 3271–82.
- 43 Tamaki C, Ohtsuki S, Terasaki T. Insulin facilitates the hepatic clearance of plasma amyloid beta-peptide (1 40) by intracellular translocation of low-density lipoprotein receptor-related protein (LRP1) to the plasma membrane in hepatocytes. Mol Pharmacol 2007; 72: 850–5.
- 44 Zhang H, Lee JM, Wang Y, Dong L, Ko KW, Pelletier L et al. Mutational analysis of the FXNPXY motif within LDL receptor-related protein 1 (LRP1) reveals the functional importance of the tyrosine residues in cell growth regulation and signal transduction. Biochem J 2008; 409: 53–64.
- 45 Risé P, Ghezzi S, Carissimi R, Mastromauro F, Petroni A, Galli C. Delta5 desaturase mRNA levels are increased by simvastatin via SREBP-1 at early stages, not via PPARalpha, in THP-1 cells. Eur J Pharmacol 2007; 571: 97–105.
- 46 Hsu MH, Savas U, Griffin KJ, Johnson EF. Regulation of human cytochrome P450 4F2 expression by sterol regulatory element-binding protein and lovastatin. J Biol Chem 2007; 282: 5225–36.
- 47 Wojcik C, Bury M, Stoklosa T, Giermasz A, Feleszko W, Mlynarczuk I et al. Lovastatin and simvastatin are modulators of the proteasome. Int J Biochem Cell Biol 2000; 32: 957–65.
- 48 Murray SS, Tu KN, Young KL, Murray EJ. The effects of lovastatin on proteasome activities in highly purified rabbit 20s proteasome preparations and mouse MC3T3-E1 osteoblastic cells. Metabolism 2002; 51: 1153–60.
- 49 Melman L, Geuze HJ, Li Y, McCormick LM, Van Kerkhof P, Strous GJ et al. Proteasome regulates the delivery of LDL receptor-related protein into the degradation pathway. Mol Biol Cell 2002; 13: 3325–35.
- 50 Ye P, Yu D, Song L, Deng X, Zhao Y. Inhibitory effect of fluvastatin on aortic intimal thickening in normocholesterolemic rabbits. Chin Med Sci J 2000; 15: 140–4.
- 51 Yamakawa T, Tanaka S, Kamei J, Kadonosono K, Okuda K. Pitavastatin inhibits vascular smooth muscle cell proliferation by inactivating extracellular signal-regulated kinases 1/2. J Atheroscler Thromb 2003; 10: 37–42.