Indoleamine 2,3-dioxygenase-expressing peripheral cells in rheumatoid arthritis and systemic lupus erythematosus: a cross-sectional study
Janette Furuzawa-Carballeda
Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Col Sección XVI, CP 14000, Mexico City, Mexico
Search for more papers by this authorGuadalupe Lima
Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Col Sección XVI, CP 14000, Mexico City, Mexico
Search for more papers by this authorJuan Jakez-Ocampo
Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Col Sección XVI, CP 14000, Mexico City, Mexico
Search for more papers by this authorLuis Llorente
Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Col Sección XVI, CP 14000, Mexico City, Mexico
Search for more papers by this authorJanette Furuzawa-Carballeda
Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Col Sección XVI, CP 14000, Mexico City, Mexico
Search for more papers by this authorGuadalupe Lima
Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Col Sección XVI, CP 14000, Mexico City, Mexico
Search for more papers by this authorJuan Jakez-Ocampo
Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Col Sección XVI, CP 14000, Mexico City, Mexico
Search for more papers by this authorLuis Llorente
Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Col Sección XVI, CP 14000, Mexico City, Mexico
Search for more papers by this authorAbstract
Eur J Clin Invest 2011; 41 (10): 1037–1046
Background Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-degrading enzyme which suppresses T lymphocyte activity and induces Foxp3+ CD4+ regulatory T cells (Tregs) polarisation. The aim of this study was to evaluate the expression of IDO in freshly isolated peripheral cells as well as to enumerate Tregs and Th17 subpopulation in rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) patients.
Materials and methods The percentage of IDO-expressing cells as well as Tregs and Th17 was evaluated in 14 active RA- (aRA), 13 inactive RA- (iRA), 7 aSLE-, 12 iSLE-treated patients and 11 healthy donors (controls). Intracellular IDO was analysed by flow cytometry in CD14+, CD8α+, CD16+ and CD123+ cell subpopulations. Tregs and Th17 were assessed by intracellular of Foxp3 and IL17A detection in CD4+ CD14− cells. A total of 50,000 events were recorded for each sample.
Results The amounts of CD14+/CD16−/IDO+, CD14−/CD16+/IDO+ and CD14+/CD16+/IDO+-expressing peripheral cells were slightly lower in inactive vs. active disease in RA and SLE patients. Notwithstanding, only inactive patients had statistically significant lower percentages when compared to controls. aRA and iRA showed a statistically significant decrease in CD8α+/CD123+/IDO+ vs. controls. Meanwhile, only iSLE patients had lower CD8α+/CD123+/IDO+ cells vs. aSLE patients and controls. Th17 subset was present in higher amounts in aRA and iRA patients vs. controls. Tregs showed an increase in aRA patients vs. controls.
Conclusions A decreased percentage of IDO-expressing peripheral cells were determined in iRA and iSLE compared to controls. It could play a critical role in tolerance loss in these diseases.
References
- 1 Steinman RM, Nussenzweig MC. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci 2002; 99: 351–8.
- 2 Munn DH, Sharma MD, Mellor AL. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J Immunol 2004; 172: 4100–10.
- 3 Pertovaara M, Raitala A, Uusitalo H, Pukander J, Helin H, Oja SS et al. Mechanisms dependent on tryptophan catabolism regulate immune responses in primary Sjögren’s syndrome. Clin Exp Immunol 2005; 142: 155–61.
- 4 Chen W, Liang X, Peterson AJ, Munn DH, Blazar BR. The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J Immunol 2008; 181: 5396–404.
- 5 Mulley WR, Nikolic-Paterson DJ. Indoleamine 2,3-dioxygenase in transplantation. Nephrology 2008; 13: 204–11.
- 6 Curti A, Trabanelli S, Salvestrini V, Baccarani M, Lemoli RM. The role of indoleamine 2,3-dioxygenase in the induction of immune tolerance: focus on hematology. Blood 2009; 113: 2394–401.
- 7 Popov A, Schultze J. IDO-expressing regulatory dendritic cells in cancer and chronic infection. J Mol Med 2008; 86: 145–60.
- 8 Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 1999; 189: 1363–72.
- 9 Mellor AL, Keskin DB, Johnson T, Chandler P, Munn DH. Cells expressing indoleamine 2,3-dioxygenase inhibits T cell responses. J Immunol 2002; 168: 3771–6.
- 10 Fallarino F, Vacca C, Orabona C, Belladonna ML, Bianchi R, Marshall B et al. Functional expression of indoleamine 2,3-dioxygenase by murine CD8α+ dendritic cells. Int Immunol 2002; 14: 65–8.
- 11 Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 2002; 297: 1867–70.
- 12 Zhu L, Ji F, Wang Y, Zhang Y, Liu Q, Zhang JZ et al. Synovial autoreactive T cells in rheumatoid arthritis resist IDO-Mediated inhibition. J Immunol 2006; 177: 8226–33.
- 13 Grohmann U, Volpi C, Fallarino F, Bozza S, Bianchi R, Vacca C et al. Reverse signaling through GITR ligand enables dexamethasone to active IDO in allergy. Nat Med 2007; 13: 579–86.
- 14 Puccetti P, Fallarino F. Generation of T cell regulatory activity by plasmacytoid dendritic cells and tryptophan catabolism. Blood Cells Mol Dis 2008; 40: 101–5.
- 15 Mellor AL, Munn DH. Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol Today 1999; 20: 469–73.
- 16 Mellor AL, Munn DH. Tryptophan catabolism and regulation of adaptive immunity. J Immunol 2003; 170: 5809–13.
- 17 Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nature Rev Immunol 2004; 4: 762–4.
- 18 Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al. The American rheumatism association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31: 315–24.
- 19 Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982; 25: 1271–7.
- 20 Prevoo MLL, Van’T Hof MA, Kuper HH, Van Leeuwen MA, Van de Putte LBA, Van Riel PL. Modified disease activity scores that included twenty-eight-joint counts. Arthritis Rheum 1995; 38: 44–8.
- 21 Abrahamowicz M, Fortin PR, du Berger R, Nayak V, Neville C, Liang MH. The relationship between disease activity and expert physician’s decision to start major treatment in active systemic lupus erythematosus: a decision aid for development of entry criteria for clinical trials. J Rheumatol 1998; 25: 277–84.
- 22 Simera I, Moher D, Hoey J, Schulz KF, Altman DG. A catalogue of reporting guidelines for health research. Eur J Clin Invest 2010; 40: 35–53.
- 23 Furst DE. Development of TNF inhibitor therapies for the treatment of rheumatoid arhtirits. Clin Exp Rheumatol 2010; 28: S5–12.
- 24 Bertsias GK, Salmon JE, Boumpas DT. Therapeutic opportunities in systemic lupus erythematosus: state of the art and prospects for the new decade. Ann Rheum Dis 2010; 69: 1603–11.
- 25 Zanoni I, Granucci F. The regulatory role of dendritic cells in the induction and maintenance of T-cell tolerance. Autoimmunity 2010; 44: 23–32.
- 26 Favre D, Mold J, Hunt PW, Kanwar B, Loke P, Seu L et al. Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of Th17 to regulatory T cells in HIV disease. Sci Transl Med 2010; 2: 32–6.
- 27 Gasparri AM, Jachetti E, Colombo B, Sacchi A, Curnis F, Rizzardi GP et al. Critical role of indoleamine 2,3-dioxygenase in tumor resistance to repeat treatments with targeted IFNgamma. Mol Cancer Ther 2008; 7: 3859–66.
- 28 Furuzawa-Carballeda J, Lima G, Uribe-Uribe N, Avila-Casado C, Mancilla E, Morales-Buenrostro LE et al. High levels of IDO-expressing CD16- peripheral cells, and Tregs in graft biopsies from kidney transplant recipients under belatacept treatment. Transplant Proc, 2010; 42: 3489–96.
- 29 Correale J, Villa A. Role of CD8+ CD25+ Foxp3+ regulatory T cells in multiple sclerosis. Ann Neurol 2010; 67: 625–8.
- 30 Ueno A, Cho S, Cheng L, Wang J, Hou S, Nakano H et al. Transient upregulation of indoleamine 2,3-dioxygenase in dendritic cells by human chorionic gonadotropin downregulates autoimmune diabetes. Diabetes 2007; 56: 1686–93.
- 31 Ziegler-Heitbrock HWL. Heterogeneity of human blood monocytes: The CD14+ CD16+ subpopulation. Immunol Today 1996; 17: 424–8.
- 32 Randolf GJ, Sánchez-Schmitz G, Liebman RM, Schakel K. The CD16+ (FcγRIII+) subset of human monocytes preferentially become migratory dendritic cells in a model tissue setting. J Exp Med 2002; 196: 517–27.
- 33 Sánchez-Torres C, Garcia-Romo GS, Cornejo-Cortes MA, Rivas-Carvalho A, Sánchez-Schmitz G. CD16+ and CD16- human blood monocyte subsets differentiate in vitro to dendritic cells with different abilities to stimulate CD4+ T cells. Int Immunol 2001; 13: 1571–81.
- 34 Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 2000; 165: 6037–46.
- 35 Grohmann U, Fallarino F, Bianchi R, Belladonna ML, Vacca C, Orabona C et al. IL-6 inhibits the tolerogenic function of CD8 alpha+ dendritic cells expressing indoleamine 2,3-dioxygenase. J Immunol 2001; 167: 708–14.
- 36 Orabona C, Puccetti P, Vacca C, Bicciato S, Luchini A, Fallarino F et al. Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood 2006; 107: 2846–54.
- 37 Cao W. Molecular characterization of human plasmacytoid dendritic cells. J Clin Immunol 2009; 29: 257–64.
- 38 Manlapat AK, Kahler DJ, Chandler PR, Munn DH, Mellor AL. Cell-autonomous control of interferon type I expression by indoleamine 2,3-dioxygenase in regulatory CD19+ dendritic cells. Eur J Immunol 2007; 37: 1064–71.
- 39 Mellor AL, Baban B, Chandler PR, Manlapat A, Kahler DJ, Munn DH. Cutting edge: CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependent T cell regulatory functions via IFN type 1 signaling. J Immunol 2005; 175: 5601–5.
- 40 Pertovaara M, Hasan T, Raitala A, Oja SS, Yli-Kerttula U, Korpela M et al. Indoleamine 2,3-dioxygenase activity is increased in patients with systemic lupus erythematosus and predicts disease activation in the sunny season. Clin Exp Immunol 2007; 150: 274–8.
- 41 Grohmann U, Fallarino F, Bianchi R, Orabona C, Vacca C, Fioretti MC et al. A defect in tryptophan catabolism impairs tolerance in ninobese diabetic mice. J Exp Med 2003; 198: 153–60.
- 42 Oertelt-Prigione S, Mao TK, Selmi C, Tsuneyama K, Ansari AA, Coppel RL et al. Impaired indoleamine 2,3-dioxygenase production contributes to the development of autoimmunity in primary biliary cirrhosis. Autoimmunity 2008; 41: 92–9.
- 43 Lande R, Giacomini E, Serafini B, Rosicarelli B, Sebastiani GD, Minisola G et al. Characterization and recruitment of plasmacytoid dendritic cells in synovial fluid and tissue of patients with chronic inflammatory arthritis. J Immunol 2004; 173: 2815–24.
- 44 Scott GN, DuHadaway J, Pigott E, Ridge N, Prendergast GC, Muller AJ et al. The immunoregulatory enzyme IDO paradoxically drives B cell-mediated autoimmunity. J Immunol 2009; 182: 7509–15.
- 45 González A, Varo N, Alegre E, Díaz A, Melero I. Immunosuppression routed via the kynurenine pathway: a biochemical and pathophysiologic approach. Adv Clin Chem 2008; 45: 155–97.
- 46 Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C et al. Tryptophan catabolism generates autoimmune-preventive regulatory T cells. Transpl Immunol 2006; 17: 58–60.