Volume 40, Issue 5 pp. 811-819

Bacterial strain-specific induction of Foxp3+ T regulatory cells is protective in murine allergy models

A. Lyons

A. Lyons

Alimentary Health Ltd, Cork, Ireland

Search for more papers by this author
D. O'Mahony

D. O'Mahony

Alimentary Health Ltd, Cork, Ireland

Search for more papers by this author
F. O'Brien

F. O'Brien

Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland

Search for more papers by this author
J. MacSharry

J. MacSharry

Alimentary Health Ltd, Cork, Ireland

Search for more papers by this author
B. Sheil

B. Sheil

Alimentary Health Ltd, Cork, Ireland

Search for more papers by this author
M. Ceddia

M. Ceddia

Mead Johnson Nutrition, Evansville, IN, USA

Search for more papers by this author
W. M. Russell

W. M. Russell

Mead Johnson Nutrition, Evansville, IN, USA

Search for more papers by this author
P. Forsythe

P. Forsythe

The Brain Body Institute, McMaster University, Hamilton, ON, Canada

Search for more papers by this author
J. Bienenstock

J. Bienenstock

The Brain Body Institute, McMaster University, Hamilton, ON, Canada

Search for more papers by this author
B. Kiely

B. Kiely

Alimentary Health Ltd, Cork, Ireland

Search for more papers by this author
F. Shanahan

F. Shanahan

Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland

Search for more papers by this author
L. O'Mahony

L. O'Mahony

Swiss Institute for Allergy and Asthma Research (SIAF), Davos, Switzerland

Search for more papers by this author
First published: 19 April 2010
Citations: 187
Correspondence:
Dr Liam O'Mahony, Swiss Institute of Allergy and Asthma Research (SIAF), Davos CH-7270, Switzerland.
E-mail: [email protected]

Summary

Background The incidence of atopic disease has increased dramatically during recent decades and the potential immunoregulatory influence of the microbiota in these individuals is under investigation.

Objective The aim of our study was to identify a bacterial strain that is protective in murine allergy models and to determine if microbial induction of T regulatory cells was associated with protection from allergic inflammation.

Methods Three microbes (Bifidobacterium breve AH1205, B. longum AH1206 and Lactobacillus salivarius AH102) of human origin were fed to newborn, adult and germ-free animals. Induction of Foxp3+ T regulatory cells was assessed by flow cytometry. Gene array analysis was performed on Peyer's patches. Strains were also examined for their protective effects in the ovalbumin (OVA) respiratory allergy model and the OVA-cholera toxin dietary allergy model.

Results Bifidobacterium longum AH1206 consumption resulted in increased numbers of Foxp3+ T regulatory cells in infant, adult and germ-free animals. B. breve AH1205 induced Foxp3+ T regulatory cell expansion only in infant mice while L. salivarius AH102 did not alter T regulatory cell numbers in any animal model tested. B. longum AH1206 reduced the Peyer's patch gene expression associated with antigen presentation, TLR signalling and cytokine production while increasing the expression of genes associated with retinoic acid metabolism. B. longum AH1206 protected against airway inflammation in OVA-sensitized animals and B. longum AH1206 blocked the induction of IgE to orally administered OVA. Neither B. breve AH1205 nor L. salivarius AH102 had a protective effect in either model.

Conclusion Bacterial strain-specific induction of Foxp3+ T regulatory cells in vivo is associated with protection from respiratory and oral allergy.

Cite this as: A. Lyons, D. O'Mahony, F. O'Brien, J. MacSharry, B. Sheil, M. Ceddia, W. M.Russell, P. ForsytheJ. Bienenstock, B. Kiely, F. Shanahan and L. O'Mahony, Clinical & Experimental Allergy, 2010 (40) 811–819.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.