Immune dysregulation and dyserythropoiesis in the myelodysplastic syndromes
Fiorella Alfinito
Dipartimento di Biochimica e Biotecnologie Mediche
FA and MS equally contributed to the study.
Search for more papers by this authorMichela Sica
Dipartimento di Biologia e Patologia Cellulare e Molecolare
FA and MS equally contributed to the study.
Present address: Michela Sica, CRL Istituto Toscano Tumori, Firenze, Italy
Search for more papers by this authorLuigiana Luciano
Dipartimento di Biochimica e Biotecnologie Mediche
Search for more papers by this authorRoberta Della Pepa
Dipartimento di Biochimica e Biotecnologie Mediche
Search for more papers by this authorCarmela Palladino
Dipartimento di Biochimica e Biotecnologie Mediche
Search for more papers by this authorIdalucia Ferrara
Dipartimento di Biochimica e Biotecnologie Mediche
Search for more papers by this authorUmberto Giani
Dipartimento di Scienze Mediche Preventive, Università di Napoli “Federico II”, Napoli
Search for more papers by this authorGiuseppina Ruggiero
Dipartimento di Biologia e Patologia Cellulare e Molecolare
Search for more papers by this authorGiuseppe Terrazzano
Dipartimento di Biologia e Patologia Cellulare e Molecolare
Dipartimento di Chimica, Università della Basilicata, Potenza, Italy
Search for more papers by this authorFiorella Alfinito
Dipartimento di Biochimica e Biotecnologie Mediche
FA and MS equally contributed to the study.
Search for more papers by this authorMichela Sica
Dipartimento di Biologia e Patologia Cellulare e Molecolare
FA and MS equally contributed to the study.
Present address: Michela Sica, CRL Istituto Toscano Tumori, Firenze, Italy
Search for more papers by this authorLuigiana Luciano
Dipartimento di Biochimica e Biotecnologie Mediche
Search for more papers by this authorRoberta Della Pepa
Dipartimento di Biochimica e Biotecnologie Mediche
Search for more papers by this authorCarmela Palladino
Dipartimento di Biochimica e Biotecnologie Mediche
Search for more papers by this authorIdalucia Ferrara
Dipartimento di Biochimica e Biotecnologie Mediche
Search for more papers by this authorUmberto Giani
Dipartimento di Scienze Mediche Preventive, Università di Napoli “Federico II”, Napoli
Search for more papers by this authorGiuseppina Ruggiero
Dipartimento di Biologia e Patologia Cellulare e Molecolare
Search for more papers by this authorGiuseppe Terrazzano
Dipartimento di Biologia e Patologia Cellulare e Molecolare
Dipartimento di Chimica, Università della Basilicata, Potenza, Italy
Search for more papers by this authorPresent address: Michela Sica, CRL Istituto Toscano Tumori, Firenze, Italy
Summary
The myelodysplastic syndromes (MDS) are clonal disorders characterised by ineffective haematopoiesis with high risk of leukaemia progression. The relevance of immune-dysregulation for emergence, dominance and progression of dysplastic clones has been suggested, but valuable criteria to obtain insight into these connections are lacking. This study showed significant increase of CD8 lymphocytes and mature B cells in the bone marrow (BM) compared to peripheral blood (PB) of low risk MDS patients. Different BM levels of Regulatory T cells (Treg) identified two sub-groups in these patients; only the sub-group with lower Treg percentage showed BM recruitment of CD8 lymphocytes. Different levels of CD54 on BM CD8 cells revealed two sub-groups of Intermediate-1 (Int-1) patients. The sub-group with higher CD54 expression on BM CD8 showed high levels of this molecule also on CD4 cells. BM recruitment of CD8 lymphocytes in the low risk group and/or the presence of high CD54 expression on BM CD8 in Int-1 patients were associated with more pronounced dyserythropoiesis and erythropoietin treatment. Our data shed light on the involvement of immune-mediated mechanisms in Low and Int-1 risk MDS patients and suggest that BM versus PB levels of immune effectors could represent useful criteria for a more homogeneous grouping of MDS patients.
References
- Ahmadzadeh, M. & Rosenberg, S.A. (2006) IL-2 administration increases CD4+CD25high Foxp3+ regulatory T cells in cancer patients. Blood, 107, 2409–2414.
- Amin, H.M., Jilani, I., Estey, E.H., Keating, M.J., Dey, A.L., Manshouri, T., Kantarjian, H.M., Estrov, Z., Cortes, J.E., Thomas, D.A., Giles, F.J. & Albitar, M. (2003) Increased apoptosis in bone marrow B lymphocytes but not T lymphocytes in myelodysplastic syndrome. Blood, 102, 1866–1868.
- Baccher-Allan, C., Brown, J.A., Freeman, G.J. & Hafler, D.A. (2001) CD4+CD25high regulatory cells in human peripheral blood. Journal of Immunology, 167, 1245–1253.
- Barrett, A.J. (2004) Myelodysplastic syndrome: an example of misguided immune surveillance? Leukemia Research, 28, 1123–1124.
- Barrett, J., Saunthararajah, Y. & Molldrem, J. (2000) Myelodysplastic syndrome and aplastic anaemia: distinct entities or diseases linked by a common pathophysiology? Seminars in Hematology, 37, 15–29.
- Baumann, I., Scheid, C., Koref, M.S., Swindell, R., Stern, P. & Testa, N.G. (2002) Autologous lymphocytes inhibit haemopoiesis in long-term culture in patients with myelodysplastic syndrome. Experimental Hematology, 30, 1405–1411.
- Beyer, M, Kochanek, M., Giese, T., Endl, E., Weihrauch, M.R., Knolle, P.A., Classen, S. & Schultze, J.L. (2006) In vivo peripheral expansion of naive CD4+CD25high Foxp3+ regulatory T cells in patients with multiple myeloma. Blood, 107, 3940–3949.
- Chen, G., Zeng, W., Miyazato, A., Billings, E., Maciejewski, J.P., Kajigaya, S., Sloand, E.M. & Young, N.S. (2004) Distinctive gene expression profiles of CD34 cells from patients with myelodysplastic syndrome characterized by specific chromosomal abnormalities. Blood, 104, 4210–4218.
- Claessens, Y.E., Bouscary, D., Dupont, J.M., Picard, F., Melle, J., Gisselbrecht, S., Lacombe, C., Dreyfus, F., Mayeux, P. & Fontenay-Roupie, M. (2002) In vitro proliferation and differentiation of erythroid progenitors from patients with myelodysplastic syndromes: evidence for fas-dependent apoptosis. Blood, 99, 1594–81601.
- Deeg, H.J., Beckham, C., Loken, M.R., Bryant, E., Lesnikova, M., Shulman, H.M. & Gooley, T. (2000) Negative regulators of haemopoiesis and stroma function in patients with myelodysplastic syndrome. Leukemia and Lymphoma, 37, 405–414.
- Epperson, D.E., Nakamura, R., Saunthararaja, Y., Melenhorst, J. & Barrett, A.J. (2001) Oligoclonal T cell expansion in Myelodysplastic syndrome: evidence for an autoimmune process. Leukemia Research, 25, 1075–1083.
- Feuerer, M., Beckhove, P., Garbi, N., Mahnke, Y., Limmer, A., Hommel, M., Hämmerling, G.J., Kyewski, B., Hamann, A., Umansky, V. & Schirrmacher, V. (2003) Bone marrow as a priming site for T-cell responses to blood borne antigen. Nature Medicine, 9, 1151–1157.
- Greenberg, F., Cox, C., LeBeau, M.M., Fenaux, P., Morel, P., Sanz, G., Sanz, M., Vallespi, T., Hamblin, T., Oscier, D., Ohyashiki, K., Toyama, K., Aul, C., Mufti, G. & Bennett, J. (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood, 89, 2079–2088.
- Heaney, M.L & Golde, D.W. (1999) Myelodysplasia. New England Journal of Medicine, 340, 1649–1660.
- Hodge, J.W., Chakraborty, M., Kudo-Saito, C., Garnett, C.T. & Schlom, J. (2005) Multiple costimulatory modalities enhance CTL avidity. Journal of Immunology, 174, 5994–6004.
- Huehn, J. & Hamann, A. (2005) Homing to suppress: address codes for Treg migration. Trends in Immunology, 26, 632–636.
- Jahnke, A. & Johnson, J.P. (1995) Intercellular adhesion molecule-1 (ICAM-1) is synergistically activated by TNF-alpha and IFN-gamma responsive sites. Immunobiology, 193, 305–314.
- Jonásova, A., Neuwirtová, R., Cermák, J., Vozobulová, V., Mociková, K., Sisková, M. & Hochová, I. (1998) Cyclosporin: a therapy in hypoplastic MDS patients and certain refractory anaemias without hypoplastic bone marrow. British Journal of Haematology, 100, 304–309.
- Killick, S.B., Mufti, G., Cavenagh, J.D., Mijovic, A., Peacock, J.L., Gordon-Smith, E.C., Bowen, D.T. & Marsh, J.C. (2003) A pilot study of antithymocyte globulin (ATG) in the treatment of patients with ‘low-risk’ myelodysplasia. British Journal of Haematology, 120, 679–684.
- Kordasti, S.Y., Ingram, W., Hayden, J., Darling, D., Barber, L., Afzali, B., Lombardi, G., Wlodarski, M.W., Maciejewski, J.P., Farzaneh, F. & Mufti, G.J. (2007) CD4+CD25+high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS). Blood, 110, 847–850.
- Kotsianidis, I., Bouchliou, I., Nakou, E., Spanoudakis, E., Margaritis, D., Christophoridou, A.V., Anastasiades, A., Tsigalou, C., Bourikas, G., Karadimitris, A. & Tsatalas, C. (2009) Kinetics, function and bone marrow trafficking of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS). Leukemia, 23, 510–518.
- Li, R., Perez, N., Karumuthil-Melethil, S. & Vasu, C. (2007) Bone marrow is a preferential home site for autoreactive T-cells in Type-1 diabetes. Diabetes, 56, 2251–2259.
- Loken, M.R., Chu, S., Fritschle, W., Kalnoski, M., Denise, A. & Wells, D.A. (2009) Normalization of bone marrow aspirates for hemodilution in flow cytometric analyses. Cytometry, 76B, 27–36.
- Luzzatto, L., Bessler, M. & Rotoli, B. (1997) Somatic mutations in paroxysmal nocturnal hemoglobinuria: a blessing in disguise? Cell, 88, 1–4.
- Maciejewski, J.P. (2007) Immune-mediated bone marrow failure syndromes of progenitor and stem cells: molecular analysis of cytotoxic T cell clones. Folia Histochemica et Cytochemica, 45, 5–14.
- Malcovati, L., Porta, M.G., Pascutto, C., Invernizzi, R., Boni, M., Travaglino, E., Passamonti, F., Arcaini, L., Maffioli, M., Bernasconi, P., Lazzarino, M. & Cazzola, M. (2005) Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. Journal of Clinical Oncology, 23, 7594–7603.
- Malcovati, L., Germing, U. & Kuendgen, A. (2007) Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. Journal Clinical Oncology, 25, 3503–3510.
- Matloubian, M., Concepcion, R.J. & Ahmed, R. (1994) CD4+ T cells are required to sustain CD8+ cytotoxic T cell responses during chronic viral infection. Journal of Virology, 68, 8056–8063.
- Melenhorst, J.J., Scheinberg, P., Chattopadhyay, P.K., Gostick, E., Ladell, K., Roederer, M., Hensel, N.F., Douek, D.C., Barrett, A.J. & Price, D.A. (2009) High avidity myeloid leukemia-associated antigen-specific CD8+ T cells preferentially reside in the bone marrow. Blood, 113, 2238–2244.
- Miller, M.J., Safrina, O., Parker, I. & Cahalan, M.D. (2004) Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. Journal of Experimental Medicine, 200, 847–856.
- Molldrem, J.J., Leifer, E., Bahceci, E., Saunthararajah, Y., Rivera, M., Dunbar, C., Liu, J., Nakamura, R., Young, N.S. & Barrett, A.J. (2002) Antithymocyte globulin for treatment of the bone marrow failure associated with Myelodysplastic Syndromes. Annals of Internal Medicine, 137, 156–163.
- Palendira, U., Chinn, R., Raza, W., Piper, K., Pratt, G., Machado, L., Bell, A., Khan, N., Hislop, A.D., Steyn, R., Rickinson, A.B., Buckley, C.D. & Moss, P. (2008) Selective accumulation of virus-specific CD8+ T cells with unique homing phenotype within bone marrow. Blood, 112, 3293–3302.
- Parker, J.E. & Mufti, G.J. (2000) Excessive apoptosis in Low risk myelodysplastic syndromes (MDS). Leukemia and Lymphoma, 40, 1–24.
- Pellagatti, A., Cazzola, M., Giagounidis, A.A., Malcovati, L., Porta, M.G., Killick, S., Campbell, L.J., Wang, L., Langford, C.F., Fidler, C., Oscier, D., Aul, C., Wainscoat, J.S. & Boultwood, J. (2006) Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon-stimulated genes and correlation to FAB subtype and karyotype. Blood, 108, 337–345.
- Ribeiro, E., Matarraz Sudón, S., De Santiago, M., Lima, C.S., Metze, K., Giralt, M., Saad, S.T., De Matos, A.O. & Lorand-Metze, I. (2006) Maturation-associated immunophenotypic abnormalities in bone marrow B lymphocytes in myelodysplastic syndromes. Leukemia Research, 30, 9–16.
- Ruggiero, G., Sica, M., Luciano, L., Savoia, F., Cosentini, E., Alfinito, F. & Terrazzano, G. (2009) A case of myelodysplastic syndrome associated with CD14(+)CD56(+) monocytosis, expansion of NK lymphocytes and defect of HLA-E expression. Leukemia Research, 33, 181–185.
- Sakaguchi, S. (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and nonself. Nature Immunology, 6, 345–352.
- Sloand, E.M. & Rezvani, K. (2008) The role of the immune system in myelodysplasia: implications for therapy. Seminars in Hematology, 45, 39–48.
- Sloand, E.M., Mainwaring, L., Fuhrer, M., Ramkissoon, S., Risitano, A.M., Keyvanafar, K., Lu, J., Basu, A., Barrett, A.J. & Young, N.S. (2005) Preferential suppression of trisomy 8 compared with normal hematopoietic cell growth by autologous lymphocytes in patients with trisomy 8 myelodysplastic syndrome. Blood, 106, 841–851.
- Sloand, E.M., Wu, C.O., Greenberg, P., Young, N.S. & Barrett, J. (2008) Factors affecting response and survival in patients with myelodysplasia treated with immunosuppressive therapy. Journal of Clinical Oncology, 26, 2505–2511.
- Steensma, D.P., Dispenzieri, A., Moore, S.B., Schroeder, G. & Tefferi, A. (2003) Antithymocyte globulin has limited efficacy and substantial toxicity in unselected anemic patients with myelodysplastic syndrome. Blood, 101, 2156–2158.
- Sternberg, A., Killick, S., Littlewood, T., Hatton, C., Peniket, A., Seidl, T., Soneji, S., Leach, J., Bowen, D., Chapman, C., Standen, G., Massey, E., Robinson, L., Vadher, B., Kaczmarski, R., Janmohammed, R., Clipsham, K., Carr, A. & Vyas, P. (2005) Evidence for reduced B cell progenitors in early (low risk) myelodysplastic syndrome. Blood, 106, 2982–2991.
- Wei, S., Kryczek, I. & Zou, W. (2006) Regulatory T-cell compartimentalization and trafficking. Blood, 108, 426–431.
- Zeng, W., Miyazato, A., Chen, G., Kajigaya, S., Young, N.S. & Maciejewski, J.P. (2006) Interferon-gamma-induced gene expression in CD34 cells: identification of pathologic cytokine-specific signature profiles. Blood, 107, 167–175.
- Zuckerman, I.A., Pullen, I. & Miller, J. (1998) Functional consequences of costimulation by ICAM-1 on T cell activation. Journal of Immunology, 160, 3259–3268.