Stress/cell death pathways, neuroinflammation, and neuropathic pain
Lu Li
Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
Search for more papers by this authorCorresponding Author
Tian Li
School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
Correspondence
Guang Han and Tian Li, Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110003, Liaoning, China.
Email: [email protected] and [email protected]; [email protected]
Search for more papers by this authorXinyu Qu
Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
Search for more papers by this authorGuangwei Sun
Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
Search for more papers by this authorQi Fu
Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
Search for more papers by this authorCorresponding Author
Guang Han
Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
Correspondence
Guang Han and Tian Li, Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110003, Liaoning, China.
Email: [email protected] and [email protected]; [email protected]
Search for more papers by this authorLu Li
Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
Search for more papers by this authorCorresponding Author
Tian Li
School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
Correspondence
Guang Han and Tian Li, Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110003, Liaoning, China.
Email: [email protected] and [email protected]; [email protected]
Search for more papers by this authorXinyu Qu
Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
Search for more papers by this authorGuangwei Sun
Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
Search for more papers by this authorQi Fu
Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
Search for more papers by this authorCorresponding Author
Guang Han
Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
Correspondence
Guang Han and Tian Li, Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110003, Liaoning, China.
Email: [email protected] and [email protected]; [email protected]
Search for more papers by this authorThis article is part of a series of reviews covering Mechanisms of programmed cell death appearing in Volume 321 of Immunological Reviews.
Summary
Neuropathic pain is a common and debilitating modality of chronic pain induced by a lesion or disease of the somatosensory nervous system. Albeit the elucidation of numerous pathophysiological mechanisms and the development of potential treatment compounds, safe and reliable therapies of neuropathic pain remain poor. Multiple stress/cell death pathways have been shown to be implicated in neuroinflammation during neuropathic pain. Here, we summarize the current knowledge of stress/cell death pathways and present an overview of the roles and molecular mechanisms of stress/cell death pathways in neuroinflammation during neuropathic pain, covering intrinsic and extrinsic apoptosis, autophagy, mitophagy, ferroptosis, pyroptosis, necroptosis, and phagoptosis. Small molecule compounds that modulate stress/cell death pathways in alleviating neuropathic pain are discussed mainly based on preclinical neuropathic pain models. These findings will contribute to in-depth understanding of the pathological processes during neuropathic pain as well as bridge the gap between basic and translational research to uncover new neuroprotective interventions.
CONFLICT OF INTEREST STATEMENT
The authors declare that there are no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
The datasets analyzed during the current study are available from the corresponding author on reasonable request.
REFERENCES
- 1Raja SN, Carr DB, Cohen M, et al. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain. 2020; 161(9): 1976-1982.
- 2Finnerup NB, Kuner R, Jensen TS. Neuropathic pain: from mechanisms to treatment. Physiol Rev. 2021; 101(1): 259-301.
- 3van Hecke O, Austin SK, Khan RA, Smith BH, Torrance N. Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain. 2014; 155(4): 654-662.
- 4Dieleman JP, Kerklaan J, Huygen F, Bouma PAD, Sturkenboom M. Incidence rates and treatment of neuropathic pain conditions in the general population. Pain. 2008; 137(3): 681-688.
- 5Bouhassira D, Lantéri-Minet M, Attal N, Laurent B, Touboul C. Prevalence of chronic pain with neuropathic characteristics in the general population. Pain. 2008; 136(3): 380-387.
- 6Torrance N, Smith BH, Bennett MI, Lee AJ. The epidemiology of chronic pain of predominantly neuropathic origin. Results from a general population survey. J Pain. 2006; 7(4): 281-289.
- 7Haythornthwaite JA, Clark MR, Pappagallo M, Raja SN. Pain coping strategies play a role in the persistence of pain in post-herpetic neuralgia. Pain. 2003; 106(3): 453-460.
- 8Ji RR, Nackley A, Huh Y, Terrando N, Maixner W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology. 2018; 129(2): 343-366.
- 9Sisignano M, Gribbon P, Geisslinger G. Drug repurposing to target neuroinflammation and sensory neuron-dependent pain. Drugs. 2022; 82(4): 357-373.
- 10Pettmann B, Henderson CE. Neuronal cell death. Neuron. 1998; 20(4): 633-647.
- 11Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972; 26(4): 239-257.
- 12Vitale I, Pietrocola F, Guilbaud E, et al. Apoptotic cell death in disease-current understanding of the NCCD 2023. Cell Death Differ. 2023; 30(5): 1097-1154.
- 13Deter RL, De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol. 1967; 33(2): 437-449.
- 14Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009; 10(7): 458-467.
- 15Yu L, McPhee CK, Zheng L, et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature. 2010; 465(7300): 942-946.
- 16Cui Z, Napolitano G, de Araujo MEG, et al. Structure of the lysosomal mTORC1-TFEB-rag-Ragulator megacomplex. Nature. 2023; 614(7948): 572-579.
- 17Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999; 402(6762): 672-676.
- 18Deng G, Li C, Chen L, et al. BECN2 (beclin 2) negatively regulates inflammasome sensors through ATG9A-dependent but ATG16L1- and LC3-independent non-canonical autophagy. Autophagy. 2022; 18(2): 340-356.
- 19Cadwell K, Liu JY, Brown SL, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature. 2008; 456(7219): 259-263.
- 20Gluschko A, Farid A, Herb M, Grumme D, Krönke M, Schramm M. Macrophages target listeria monocytogenes by two discrete non-canonical autophagy pathways. Autophagy. 2022; 18(5): 1090-1107.
- 21Durgan J, Lystad AH, Sloan K, et al. Non-canonical autophagy drives alternative ATG8 conjugation to phosphatidylserine. Mol Cell. 2021; 81(9): 2031-2040.e2038.
- 22Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 2005; 8(1): 3-5.
- 23Lu Y, Li Z, Zhang S, Zhang T, Liu Y, Zhang L. Cellular mitophagy: mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics. 2023; 13(2): 736-766.
- 24Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012; 149(5): 1060-1072.
- 25Niu X, Chen L, Li Y, Hu Z, He F. Ferroptosis, necroptosis, and pyroptosis in the tumor microenvironment: perspectives for immunotherapy of SCLC. Semin Cancer Biol. 2022; 86(Pt 3): 273-285.
- 26Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014; 16(12): 1180-1191.
- 27Zhang Y, Swanda RV, Nie L, et al. mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat Commun. 2021; 12(1): 1589.
- 28Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019; 575(7784): 688-692.
- 29Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019; 575(7784): 693-698.
- 30Mao C, Liu X, Zhang Y, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 2021; 593(7860): 586-590.
- 31Friedlander AM. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem. 1986; 261(16): 7123-7126.
- 32Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001; 9(3): 113-114.
- 33Orning P, Weng D, Starheim K, et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science. 2018; 362(6418): 1064-1069.
- 34Sarhan J, Liu BC, Muendlein HI, et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci USA. 2018; 115(46): E10888-E10897.
- 35Wang Y, Gao W, Shi X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017; 547(7661): 99-103.
- 36Jiang S, Zhou Z, Sun Y, Zhang T, Sun L. Coral gasdermin triggers pyroptosis. Sci Immunol. 2020; 5(54):eabd2591.
- 37Zhang Z, Zhang Y, Xia S, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature. 2020; 579(7799): 415-420.
- 38Zhou Z, He H, Wang K, et al. Granzyme a from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science. 2020; 368(6494):eaaz7548.
- 39Zhong X, Zeng H, Zhou Z, et al. Structural mechanisms for regulation of GSDMB pore-forming activity. Nature. 2023; 616(7957): 598-605.
- 40Kong Q, Xia S, Pan X, et al. Alternative splicing of GSDMB modulates killer lymphocyte-triggered pyroptosis. Sci Immunol. 2023; 8(82):eadg3196.
- 41Deng W, Bai Y, Deng F, et al. Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature. 2022; 602(7897): 496-502.
- 42Zhang JY, Zhou B, Sun RY, et al. The metabolite α-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8. Cell Res. 2021; 31(9): 980-997.
- 43Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005; 1(2): 112-119.
- 44Jiao H, Wachsmuth L, Kumari S, et al. Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature. 2020; 580(7803): 391-395.
- 45Newton K, Wickliffe KE, Maltzman A, et al. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature. 2016; 540(7631): 129-133.
- 46Brown GC, Neher JJ. Microglial phagocytosis of live neurons. Nat Rev Neurosci. 2014; 15(4): 209-216.
- 47Ho Kim S, Mo CJ. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain. 1992; 50(3): 355-363.
- 48Seltzer Z, Dubner R, Shir Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain. 1990; 43(2): 205-218.
- 49Ahlgren SC, Levine JD. Mechanical hyperalgesia in streptozotocin-diabetic rats. Neuroscience. 1993; 52(4): 1049-1055.
- 50Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain. 2000; 87(2): 149-158.
- 51King T, Vera-Portocarrero L, Gutierrez T, et al. Unmasking the tonic-aversive state in neuropathic pain. Nat Neurosci. 2009; 12(11): 1364-1366.
- 52Zhou D, Zhang S, Hu L, et al. Inhibition of apoptosis signal-regulating kinase by paeoniflorin attenuates neuroinflammation and ameliorates neuropathic pain. J Neuroinflammation. 2019; 16(1): 83.
- 53Tonkin RS, Bowles C, Perera CJ, et al. Attenuation of mechanical pain hypersensitivity by treatment with Peptide5, a connexin-43 mimetic peptide, involves inhibition of NLRP3 inflammasome in nerve-injured mice. Exp Neurol. 2018; 300: 1-12.
- 54Li GZ, Hu YH, Lu YN, et al. CaMKII and Ca(V)3.2 T-type calcium channel mediate Connexin-43-dependent inflammation by activating astrocytes in vincristine-induced neuropathic pain. Cell Biol Toxicol. 2023; 39(3): 679-702.
- 55Chen Z, Trapp BD. Microglia and neuroprotection. J Neurochem. 2016; 136(Suppl 1): 10-17.
- 56Leong ML, Gu M, Speltz-Paiz R, et al. Neuronal loss in the rostral ventromedial medulla in a rat model of neuropathic pain. J Neurosci. 2011; 31(47): 17028-17039.
- 57Plemel JR, Stratton JA, Michaels NJ, et al. Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. Sci Adv. 2020; 6(3):eaay6324.
- 58Wang X, Jiang Y, Li J, et al. DUSP1 promotes microglial polarization toward M2 phenotype in the medial prefrontal cortex of neuropathic pain rats via inhibition of MAPK pathway. ACS Chem Nerosci. 2021; 12(6): 966-978.
- 59Dai WL, Bao YN, Fan JF, et al. Levo-corydalmine attenuates microglia activation and neuropathic pain by suppressing ASK1-p38 MAPK/NF-κB signaling pathways in rat spinal cord. Reg Anesth Pain Med. 2020; 45(3): 219-229.
- 60Zhang LQ, Gao SJ, Sun J, et al. DKK3 ameliorates neuropathic pain via inhibiting ASK-1/JNK/p-38-mediated microglia polarization and neuroinflammation. J Neuroinflammation. 2022; 19(1): 129.
- 61Garraway SM, Woller SA, Huie JR, et al. Peripheral noxious stimulation reduces withdrawal threshold to mechanical stimuli after spinal cord injury: role of tumor necrosis factor alpha and apoptosis. Pain. 2014; 155(11): 2344-2359.
- 62Berta T, Park CK, Xu ZZ, et al. Extracellular caspase-6 drives murine inflammatory pain via microglial TNF-α secretion. J Clin Invest. 2014; 124(3): 1173-1186.
- 63An M, Qiu Y, Wang C, Ma P, Ding Y. Rac2 enhances activation of microglia and astrocytes, inflammatory response, and apoptosis via activating JNK signaling pathway and suppressing SIRT1 expression in chronic constriction injury-induced neuropathic pain. J Neuropathol Exp Neurol. 2023; 82(5): 419-426.
- 64Song FH, Liu DQ, Zhou YQ, Mei W. SIRT1: a promising therapeutic target for chronic pain. CNS Neurosci Ther. 2022; 28(6): 818-828.
- 65Zhou CH, Zhang MX, Zhou SS, et al. SIRT1 attenuates neuropathic pain by epigenetic regulation of mGluR1/5 expressions in type 2 diabetic rats. Pain. 2017; 158(1): 130-139.
- 66Ruiz-Cantero MC, González-Cano R, Tejada M, et al. Sigma-1 receptor: a drug target for the modulation of neuroimmune and neuroglial interactions during chronic pain. Pharmacol Res. 2021; 163:105339.
- 67Zhang D, Li X, Jing B, et al. α-Asarone attenuates chronic sciatica by inhibiting peripheral sensitization and promoting neural repair. Phytother Res. 2023; 37(1): 151-162.
- 68Zhang D, Chang S, Li X, et al. Therapeutic effect of paeoniflorin on chronic constriction injury of the sciatic nerve via the inhibition of Schwann cell apoptosis. Phytother Res. 2022; 36(6): 2572-2582.
- 69Li J, Wei GH, Huang H, et al. Nerve injury-related autoimmunity activation leads to chronic inflammation and chronic neuropathic pain. Anesthesiology. 2013; 118(2): 416-429.
- 70Li J, Tian M, Hua T, et al. Combination of autophagy and NFE2L2/NRF2 activation as a treatment approach for neuropathic pain. Autophagy. 2021; 17(12): 4062-4082.
- 71Marinelli S, Nazio F, Tinari A, et al. Schwann cell autophagy counteracts the onset and chronification of neuropathic pain. Pain. 2014; 155(1): 93-107.
- 72Ghosh K, Zhang GF, Chen H, Chen SR, Pan HL. Cannabinoid CB2 receptors are upregulated via bivalent histone modifications and control primary afferent input to the spinal cord in neuropathic pain. J Biol Chem. 2022; 298(6):101999.
- 73Sun C, An Q, Li R, et al. Calcitonin gene-related peptide induces the histone H3 lysine 9 acetylation in astrocytes associated with neuroinflammation in rats with neuropathic pain. CNS Neurosci Ther. 2021; 27(11): 1409-1424.
- 74Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006; 127(6): 1109-1122.
- 75Iwabu M, Yamauchi T, Okada-Iwabu M, et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature. 2010; 464(7293): 1313-1319.
- 76Zhao Y, Zhang J, Zheng Y, et al. NAD(+) improves cognitive function and reduces neuroinflammation by ameliorating mitochondrial damage and decreasing ROS production in chronic cerebral hypoperfusion models through Sirt1/PGC-1α pathway. J Neuroinflammation. 2021; 18(1): 207.
- 77Hao C, Ma B, Gao N, Jin T, Liu X. Translocator protein (TSPO) alleviates neuropathic pain by activating spinal autophagy and nuclear SIRT1/PGC-1α signaling in a rat L5 SNL model. J Pain Res. 2022; 15: 767-778.
- 78Gao N, Ma B, Jia H, Hao C, Jin T, Liu X. Translocator protein alleviates allodynia and improves Schwann cell function against diabetic peripheral neuropathy via activation of the Nrf2-dependent antioxidant system and promoting autophagy. Diabet Med. 2023; 40(6):e15090.
- 79Yang G, Tan Q, Li Z, et al. The AMPK pathway triggers autophagy during CSF1-induced microglial activation and may be implicated in inducing neuropathic pain. J Neuroimmunol. 2020; 345:577261.
- 80Chen X, Le Y, He WY, et al. Abnormal insulin-like growth factor 1 signaling regulates neuropathic pain by mediating the mechanistic target of rapamycin-related autophagy and neuroinflammation in mice. ACS Chem Nerosci. 2021; 12(15): 2917-2928.
- 81Meng XL, Fu P, Wang L, et al. Increased EZH2 levels in anterior cingulate cortex microglia aggravate neuropathic pain by inhibiting autophagy following brachial plexus avulsion in rats. Neurosci Bull. 2020; 36(7): 793-805.
- 82Xiao PY, Chen JY, Zeng Q, et al. UNC5B overexpression alleviates peripheral neuropathic pain by stimulating Netrin-1-dependent autophagic flux in Schwann cells. Mol Neurobiol. 2022; 59(8): 5041-5055.
- 83Jang SY, Shin YK, Park SY, et al. Autophagic myelin destruction by Schwann cells during Wallerian degeneration and segmental demyelination. Glia. 2016; 64(5): 730-742.
- 84Lazarou M, Sliter DA, Kane LA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015; 524(7565): 309-314.
- 85Yi MH, Shin J, Shin N, et al. PINK1 mediates spinal cord mitophagy in neuropathic pain. J Pain Res. 2019; 12: 1685-1699.
- 86Katayama H, Hama H, Nagasawa K, et al. Visualizing and modulating mitophagy for therapeutic studies of neurodegeneration. Cell. 2020; 181(5): 1176-1187.e1116.
- 87Shao S, Xu CB, Chen CJ, et al. Divanillyl sulfone suppresses NLRP3 inflammasome activation via inducing mitophagy to ameliorate chronic neuropathic pain in mice. J Neuroinflammation. 2021; 18(1): 142.
- 88Huang Z, Xiao PY, Chen JY, et al. Mammalian sterile 20-like kinase 1 mediates neuropathic pain associated with its effects on regulating mitophagy in Schwann cells. Oxid Med Cell Longev. 2022; 2022:3458283.
- 89Wan K, Jia M, Zhang H, et al. Electroacupuncture alleviates neuropathic pain by suppressing ferroptosis in dorsal root ganglion via SAT1/ALOX15 signaling. Mol Neurobiol. 2023; 60(10): 6121-6132.
- 90Wang H, Huo X, Han C, et al. Ferroptosis is involved in the development of neuropathic pain and allodynia. Mol Cell Biochem. 2021; 476(8): 3149-3161.
- 91Guo Y, Du J, Xiao C, et al. Inhibition of ferroptosis-like cell death attenuates neuropathic pain reactions induced by peripheral nerve injury in rats. Eur J Pain. 2021; 25(6): 1227-1240.
- 92Zhang X, Song T, Zhao M, et al. Sirtuin 2 alleviates chronic neuropathic pain by suppressing ferroptosis in rats. Front Pharmacol. 2022; 13:827016.
- 93Deng YF, Xiang P, Du JY, Liang JF, Li X. Intrathecal liproxstatin-1 delivery inhibits ferroptosis and attenuates mechanical and thermal hypersensitivities in rats with complete Freund's adjuvant-induced inflammatory pain. Neural Regen Res. 2023; 18(2): 456-462.
- 94Hua T, Yang M, Song H, et al. Huc-MSCs-derived exosomes attenuate inflammatory pain by regulating microglia pyroptosis and autophagy via the miR-146a-5p/TRAF6 axis. J Nanobiotechnol. 2022; 20(1): 324.
- 95Rojewska E, Korostynski M, Przewlocki R, Przewlocka B, Mika J. Expression profiling of genes modulated by minocycline in a rat model of neuropathic pain. Mol Pain. 2014; 10: 47.
- 96Li Z, Mao Y, Liang L, et al. The transcription factor C/EBPβ in the dorsal root ganglion contributes to peripheral nerve trauma-induced nociceptive hypersensitivity. Sci Signal. 2017; 10(487):eaam5345.
- 97Wu D, Zhang Y, Zhao C, et al. Disruption of C/EBPβ-Clec7a axis exacerbates neuroinflammatory injury via NLRP3 inflammasome-mediated pyroptosis in experimental neuropathic pain. J Transl Med. 2022; 20(1): 583.
- 98Li Z, Zhu J, Wang Y. ADAR3 alleviated inflammation and pyroptosis of neuropathic pain by targeting NLRP3 in chronic constriction injury mice. Gene. 2021; 805:145909.
- 99Fang P, Sun G, Wang J. RIP3-mediated necroptosis increases neuropathic pain via microglia activation: necrostatin-1 has therapeutic potential. FEBS Open Bio. 2021; 11(10): 2858-2865.
- 100Cao L, Mu W. Necrostatin-1 and necroptosis inhibition: pathophysiology and therapeutic implications. Pharmacol Res. 2021; 163:105297.
- 101Deng XX, Li SS, Sun FY. Necrostatin-1 prevents necroptosis in brains after ischemic stroke via inhibition of RIPK1-mediated RIPK3/MLKL signaling. Aging Dis. 2019; 10(4): 807-817.
- 102Shen B, Mei M, Pu Y, et al. Necrostatin-1 attenuates renal ischemia and reperfusion injury via meditation of HIF-1α/mir-26a/TRPC6/PARP1 signaling. Mol Ther Nucleic Acids. 2019; 17: 701-713.
- 103Liang YX, Wang NN, Zhang ZY, Juan ZD, Zhang C. Necrostatin-1 ameliorates peripheral nerve injury-induced neuropathic pain by inhibiting the RIP1/RIP3 pathway. Front Cell Neurosci. 2019; 13: 211.
- 104Ma D, Zhao S, Liu X, et al. RIP3/MLKL pathway-regulated necroptosis: a new mechanism of paclitaxel-induced peripheral neuropathy. J Biochem Mol Toxicol. 2021; 35(8):e22834.
- 105Bosanac T, Hughes RO, Engber T, et al. Pharmacological SARM1 inhibition protects axon structure and function in paclitaxel-induced peripheral neuropathy. Brain. 2021; 144(10): 3226-3238.
- 106Huang ZZ, Li D, Liu CC, et al. CX3CL1-mediated macrophage activation contributed to paclitaxel-induced DRG neuronal apoptosis and painful peripheral neuropathy. Brain Behav Immun. 2014; 40: 155-165.
- 107Wanderley CWS, Maganin AGM, Adjafre B, et al. PD-1/PD-L1 inhibition enhances chemotherapy-induced neuropathic pain by suppressing neuroimmune antinociceptive signaling. Cancer Immunol Res. 2022; 10(11): 1299-1308.
- 108Ma D, Wang X, Liu X, et al. Macrophage infiltration initiates RIP3/MLKL-dependent necroptosis in paclitaxel-induced neuropathic pain. Mediators Inflamm. 2022; 2022:1567210.
- 109Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018; 18(4): 225-242.
- 110Li Z, Wei H, Piirainen S, et al. Spinal versus brain microglial and macrophage activation traits determine the differential neuroinflammatory responses and analgesic effect of minocycline in chronic neuropathic pain. Brain Behav Immun. 2016; 58: 107-117.
- 111Qureshi OS, Paramasivam A, Yu JC, Murrell-Lagnado RD. Regulation of P2X4 receptors by lysosomal targeting, glycan protection and exocytosis. J Cell Sci. 2007; 120(Pt 21): 3838-3849.
- 112Bernier LP, Ase AR, Boué-Grabot É, Séguéla P. Inhibition of P2X4 function by P2Y6 UDP receptors in microglia. Glia. 2013; 61(12): 2038-2049.
- 113Bliss TV, Collingridge GL, Kaang BK, Zhuo M. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat Rev Neurosci. 2016; 17(8): 485-496.
- 114Li QY, Duan YW, Zhou YH, Chen SX, Li YY, Zang Y. NLRP3-mediated Piezo1 upregulation in ACC inhibitory parvalbumin-expressing interneurons is involved in pain processing after peripheral nerve injury. Int J Mol Sci. 2022; 23(21):13035.
- 115Batti L, Sundukova M, Murana E, et al. TMEM16F regulates spinal microglial function in neuropathic pain states. Cell Rep. 2016; 15(12): 2608-2615.
- 116Yao X, Sun C, Fan B, et al. Neurotropin exerts neuroprotective effects after spinal cord injury by inhibiting apoptosis and modulating cytokines. J Orthop Translat. 2021; 26: 74-83.
- 117Zhang D, Jing B, Chen ZN, et al. Ferulic acid alleviates sciatica by inhibiting neuroinflammation and promoting nerve repair via the TLR4/NF-κB pathway. CNS Neurosci Ther. 2023; 29(4): 1000-1011.
- 118Chen XJ, Wang L, Song XY. Mitoquinone alleviates vincristine-induced neuropathic pain through inhibiting oxidative stress and apoptosis via the improvement of mitochondrial dysfunction. Biomed Pharmacother. 2020; 125:110003.
- 119Ciarlo L, Marzoli F, Minosi P, Matarrese P, Pieretti S. Ammonium glycyrrhizinate prevents apoptosis and mitochondrial dysfunction induced by high glucose in SH-SY5Y cell line and counteracts neuropathic pain in streptozotocin-induced diabetic mice. Biomedicine. 2021; 9(6): 608.
- 120Weng W, Yao C, Poonit K, et al. Metformin relieves neuropathic pain after spinal nerve ligation via autophagy flux stimulation. J Cell Mol Med. 2019; 23(2): 1313-1324.
- 121Liu M, Zhao YT, Lv YY, et al. Metformin relieves bortezomib-induced neuropathic pain by regulating AMPKa2-mediated autophagy in the spinal dorsal horn. Neurochem Res. 2022; 47(7): 1878-1887.
- 122Areti A, Komirishetty P, Akuthota M, Malik RA, Kumar A. Melatonin prevents mitochondrial dysfunction and promotes neuroprotection by inducing autophagy during oxaliplatin-evoked peripheral neuropathy. J Pineal Res. 2017; 62(3):e12393.
- 123Arruri VK, Gundu C, Kalvala AK, Sherkhane B, Khatri DK, Singh SB. Carvacrol abates NLRP3 inflammasome activation by augmenting Keap1/Nrf-2/p62 directed autophagy and mitochondrial quality control in neuropathic pain. Nutr Neurosci. 2022; 25(8): 1731-1746.
- 124Gierhardt M, Pak O, Sydykov A, et al. Genetic deletion of p66shc and/or cyclophilin D results in decreased pulmonary vascular tone. Cardiovasc Res. 2022; 118(1): 305-315.
- 125Shin N, Shin HJ, Yi Y, et al. p66shc siRNA-encapsulated PLGA nanoparticles ameliorate neuropathic pain following spinal nerve ligation. Polymers (Basel). 2020; 12(5):1014.
- 126Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015; 14(2): 162-173.
- 127Yuan J, Fei Y. Lidocaine activates autophagy of astrocytes and ameliorates chronic constriction injury-induced neuropathic pain. J Biochem. 2021; 170(1): 25-31.
- 128Yang Z, Tan Q, Jiang Y, et al. Asymmetric total synthesis of sarpagine and koumine alkaloids. Angew Chem Int ed Engl. 2021; 60(23): 13105-13111.
- 129Jin GL, Yue RC, He SD, Hong LM, Xu Y, Yu CX. Koumine decreases astrocyte-mediated neuroinflammation and enhances autophagy, contributing to neuropathic pain from chronic constriction injury in rats. Front Pharmacol. 2018; 9: 989.
- 130Feng XL, Deng HB, Wang ZG, Wu Y, Ke JJ, Feng XB. Suberoylanilide hydroxamic acid triggers autophagy by influencing the mTOR pathway in the spinal dorsal horn in a rat neuropathic pain model. Neurochem Res. 2019; 44(2): 450-464.
- 131Kinfe TM, Asif M, Chakravarthy KV, et al. Unilateral L4-dorsal root ganglion stimulation evokes pain relief in chronic neuropathic postsurgical knee pain and changes of inflammatory markers: part II whole transcriptome profiling. J Transl Med. 2019; 17(1): 205.
- 132Lee A, Shirley M. Remimazolam: a review in procedural sedation. Drugs. 2021; 81(10): 1193-1201.
- 133Xie H, Lu F, Liu W, Wang E, Wang L, Zhong M. Remimazolam alleviates neuropathic pain via regulating bradykinin receptor B1 and autophagy. J Pharm Pharmacol. 2021; 73(12): 1643-1651.
- 134Wang Y, Shi Y, Huang Y, et al. Resveratrol mediates mechanical allodynia through modulating inflammatory response via the TREM2-autophagy axis in SNI rat model. J Neuroinflammation. 2020; 17(1): 311.
- 135Wang YH, Tang YR, Gao X, et al. Aspirin-triggered Resolvin D1 ameliorates activation of the NLRP3 inflammasome via induction of autophagy in a rat model of neuropathic pain. Front Pharmacol. 2023; 14:971136.
- 136Cheng KI, Chang YC, Chu LW, et al. The iridoid glycoside Loganin modulates autophagic flux following chronic constriction injury-induced neuropathic pain. Int J Mol Sci. 2022; 23(24):15873.
- 137Pyo MK, Jin JL, Koo YK, Yun-Choi HS. Phenolic and furan type compounds isolated from Gastrodia elata and their anti-platelet effects. Arch Pharm Res. 2004; 27(4): 381-385.
- 138Liu T, Wang R, Qi W, et al. Methyl ferulic acid alleviates neuropathic pain by inhibiting Nox4-induced ferroptosis in dorsal root ganglia neurons in rats. Mol Neurobiol. 2023; 60(6): 3175-3189.
- 139Yang R, Shi L, Si H, et al. Gallic acid improves comorbid chronic pain and depression behaviors by inhibiting P2X7 receptor-mediated ferroptosis in the spinal cord of rats. ACS Chem Nerosci. 2023; 14(4): 667-676.
- 140Liu Z, Gan L, Xu Y, et al. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue. J Pineal Res. 2017; 63(1):e12414.
- 141Ye D, Xu Y, Shi Y, et al. Anti-PANoptosis is involved in neuroprotective effects of melatonin in acute ocular hypertension model. J Pineal Res. 2022; 73(4):e12828.
- 142Zhang Y, Liu X, Bai X, et al. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J Pineal Res. 2018; 64(2):e12449.
- 143Wang YH, Gao X, Tang YR, et al. The role of NF-κB/NLRP3 inflammasome signaling pathway in attenuating Pyroptosis by melatonin upon spinal nerve ligation models. Neurochem Res. 2022; 47(2): 335-346.
- 144Bendtsen L, Zakrzewska JM, Heinskou TB, et al. Advances in diagnosis, classification, pathophysiology, and management of trigeminal neuralgia. Lancet Neurol. 2020; 19(9): 784-796.
- 145Mu G, Li Q, Lu B, Yu X. Amelioration of nerve demyelination by hydrogen-producing silicon-based agent in neuropathic pain rats. Int Immunopharmacol. 2023; 117:110033.
- 146Ruff MR, Polianova M, Yang QE, Leoung GS, Ruscetti FW, Pert CB. Update on D-ala-peptide T-amide (DAPTA): a viral entry inhibitor that blocks CCR5 chemokine receptors. Curr HIV Res. 2003; 1(1): 51-67.
- 147Bongiovanni AR, Zhao P, Inan S, et al. Multi-chemokine receptor antagonist RAP-103 inhibits opioid-derived respiratory depression, reduces opioid reinforcement and physical dependence, and normalizes opioid-induced dysregulation of mesolimbic chemokine receptors in rats. Drug Alcohol Depend. 2022; 238:109556.
- 148Padi SSV, Shi XQ, Zhao YQ, et al. Attenuation of rodent neuropathic pain by an orally active peptide, RAP-103, which potently blocks CCR2- and CCR5-mediated monocyte chemotaxis and inflammation. Pain. 2012; 153(1): 95-106.
- 149Noda M, Tomonaga D, Kitazono K, et al. Neuropathic pain inhibitor, RAP-103, is a potent inhibitor of microglial CCL1/CCR8. Neurochem Int. 2018; 119: 184-189.
- 150Liao MF, Yeh SR, Lu KT, et al. Interactions between autophagy, proinflammatory cytokines, and apoptosis in neuropathic pain: granulocyte Colony stimulating factor as a multipotent therapy in rats with chronic constriction injury. Biomedicine. 2021; 9(5): 542.