Early View
Review

The puzzling Spitz tumours: is artificial intelligence the key to their understanding?

Laëtitia Launet

Corresponding Author

Laëtitia Launet

Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, HUMAN-Tech, Universitat Politècnica de València, Valencia, Spain

Address for correspondence: Laëtitia Launet and Valery Naranjo, Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, HUMAN-Tech, Universitat Politècnica de València, Valencia, Spain. e-mail: [email protected] and [email protected]

Search for more papers by this author
Adrián Colomer

Adrián Colomer

Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, HUMAN-Tech, Universitat Politècnica de València, Valencia, Spain

Search for more papers by this author
Andrés Mosquera-Zamudio

Andrés Mosquera-Zamudio

Universitat de València, Valencia, Spain

INCLIVA, Instituto de Investigación Sanitaria, Valencia, Spain

Search for more papers by this author
Carlos Monteagudo

Carlos Monteagudo

Universitat de València, Valencia, Spain

INCLIVA, Instituto de Investigación Sanitaria, Valencia, Spain

Search for more papers by this author
Valery Naranjo

Corresponding Author

Valery Naranjo

Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, HUMAN-Tech, Universitat Politècnica de València, Valencia, Spain

Address for correspondence: Laëtitia Launet and Valery Naranjo, Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, HUMAN-Tech, Universitat Politècnica de València, Valencia, Spain. e-mail: [email protected] and [email protected]

Search for more papers by this author
First published: 20 February 2025

Abstract

Since their first description in 1948, Spitz tumours remain one of the most challenging diagnostic entities in dermatopathology due to their complex histological features and ambiguous clinical behaviour. In recent years, artificial intelligence (AI) solutions have demonstrated significant potential across a wide range of medical applications, including computational pathology, for decision-making in diagnosis, along with promising advances in prognosis and tumour classification. However, the application of AI to Spitz tumours remains relatively underexplored, with few studies addressing this field. Yet in this evolving technological landscape, could AI provide the insights needed to help resolve the diagnostic uncertainties surrounding Spitz tumours? How could this technology be leveraged to bridge the gap between histopathological uncertainty and clinical accuracy? This review aims to provide an overview of the current state of AI applications in Spitz tumour analysis, identify existing research gaps, and propose future directions to optimize the use of AI in understanding and diagnosing these complex tumours.

Graphical Abstract

This review explores the potential of artificial intelligence in enhancing the diagnosis and understanding of Spitz tumours, highlighting existing approaches to identify gaps and propose future guidelines for optimizing their analysis in clinical practice.

Conflict of interest

The authors declare no conflicts of interest. The founders had no role in the study's design; in the collection, analysis, or interpretation of data; in the writing of the article, or in the decision to publish the results.

Data availability statement

Data sharing was not applicable to this article as no datasets were generated or analysed during the current study.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.