Clinical relevance of 3D gait analysis in patients with haemophilia
Corresponding Author
A. Fouasson-Chailloux
CHU Nantes, Physical Medicine and Rehabilitation Center, Nantes, France
Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
UFR Odontologie, Université de Nantes, Nantes, France
Correspondence
Alban Fouasson-Chailloux, MPR Locomotrice et Respiratoire, CHU de Nantes, Hôpital St Jacques, Nantes, France.
Email: [email protected]
Search for more papers by this authorY. Maugars
Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
UFR Odontologie, Université de Nantes, Nantes, France
CHU Nantes, Nantes, France
Rheumatologic Department, CHU Nantes, Nantes, France
Search for more papers by this authorC. Vinatier
Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
UFR Odontologie, Université de Nantes, Nantes, France
Search for more papers by this authorM. Trossaert
CHU Nantes Centre Régional de traitement de l'hémophilie, Nantes, France
Search for more papers by this authorP. Menu
CHU Nantes, Physical Medicine and Rehabilitation Center, Nantes, France
Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
UFR Odontologie, Université de Nantes, Nantes, France
Search for more papers by this authorF. Rannou
Service de Rééducation et de Réadaptation de l'Appareil Locomoteur et des Pathologies du Rachis, Hôpitaux Universitaires-Paris Centre, Groupe Hospitalier Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
Search for more papers by this authorJ. Guicheux
Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
UFR Odontologie, Université de Nantes, Nantes, France
CHU Nantes, Nantes, France
Search for more papers by this authorM. Dauty
CHU Nantes, Physical Medicine and Rehabilitation Center, Nantes, France
Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
UFR Odontologie, Université de Nantes, Nantes, France
Search for more papers by this authorCorresponding Author
A. Fouasson-Chailloux
CHU Nantes, Physical Medicine and Rehabilitation Center, Nantes, France
Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
UFR Odontologie, Université de Nantes, Nantes, France
Correspondence
Alban Fouasson-Chailloux, MPR Locomotrice et Respiratoire, CHU de Nantes, Hôpital St Jacques, Nantes, France.
Email: [email protected]
Search for more papers by this authorY. Maugars
Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
UFR Odontologie, Université de Nantes, Nantes, France
CHU Nantes, Nantes, France
Rheumatologic Department, CHU Nantes, Nantes, France
Search for more papers by this authorC. Vinatier
Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
UFR Odontologie, Université de Nantes, Nantes, France
Search for more papers by this authorM. Trossaert
CHU Nantes Centre Régional de traitement de l'hémophilie, Nantes, France
Search for more papers by this authorP. Menu
CHU Nantes, Physical Medicine and Rehabilitation Center, Nantes, France
Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
UFR Odontologie, Université de Nantes, Nantes, France
Search for more papers by this authorF. Rannou
Service de Rééducation et de Réadaptation de l'Appareil Locomoteur et des Pathologies du Rachis, Hôpitaux Universitaires-Paris Centre, Groupe Hospitalier Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
Search for more papers by this authorJ. Guicheux
Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
UFR Odontologie, Université de Nantes, Nantes, France
CHU Nantes, Nantes, France
Search for more papers by this authorM. Dauty
CHU Nantes, Physical Medicine and Rehabilitation Center, Nantes, France
Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
UFR Odontologie, Université de Nantes, Nantes, France
Search for more papers by this authorAbstract
Haemophilia is characterized by a congenital deficiency of clotting factor VIII or IX. One of the consequences of haemophilia is joint bleedings. Repetitive haemathroses induce cartilage damage and chronic synovitis leading to joint deterioration, and to definitive haemophilic arthropathy which is source of walking disability. Three-dimension gait analysis (3DGA) appears particularly relevant in the case of haemophilia because it allows an evaluation of several joints in weight-bearing situations. The purpose of this study was to review the interest and the contribution of 3DGA in the management of patients with haemophilia. The greatest interest of gait analysis would be to detect early walking changes with a non-invasive and well-tolerated examination, especially in paediatric population. In adulthood, this technic may be also useful to help detect walking worsening in patients known to have already arthropathy. However, it takes time to realize and needs expensive equipment, which limits its possibility of routine use. Although generalizations of these results remain difficult, especially to compare patients with haemophilia to normal population. Indeed, in the studies, patient groups are small and usually heterogeneous in terms of age and target joints. It certainly results of the rarity of the disease. So, it could be interesting to perform a study with a larger cohort in order to allow subgroup analysis, helping to define clearly the place of 3DGA in the strategy of haemophilia evaluation.
REFERENCES
- 1White GC, Rosendaal F, Aledort LM, et al. Definitions in hemophilia. Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost. 2001; 85: 560.
- 2Bolton-Maggs PH, Pasi KJ. Haemophilias A and B. Lancet. 2003; 361: 1801-1809.
- 3Stephensen D, Tait RC, Brodie N, et al. Changing patterns of bleeding in patients with severe haemophilia A. Haemophilia. 2009; 15: 1210-1214.
- 4Fischer K, van der Bom JG, Mauser-Bunschoten EP, et al. The effects of postponing prophylactic treatment on long-term outcome in patients with severe hemophilia. Blood. 2002; 99: 2337-2341.
- 5Stephensen D, Drechsler WI, Scott OM. Influence of ankle plantar flexor muscle architecture and strength on gait in boys with haemophilia in comparison to typically developing children. Haemophilia. 2014; 20: 413-420.
- 6Rodríguez-Merchán EC, Goddard NJ, Lee CA. Muskuloskeletal aspect of haemophilia. Vol. 1. 1st ed. Oxford: Blackwell Science; 2000.
10.1002/9780470693872 Google Scholar
- 7Hoots WK. Pathogenesis. Semin Hematol. 2006; 43: S18-S22. https://doi.org/10.1053/j.seminhematol.2005.11.026.
- 8Creaby MW, Bennell KL, Hunt MA. Gait differs between unilateral and bilateral knee osteoarthritis. Arch Phys Med Rehabil. 2012; 93: 822-827.
- 9Favre J, Erhart-Hledik JC, Andriacchi TP. Age-related differences in sagittal-plane knee function at heel-strike of walking are increased in osteoarthritic patients. Osteoarthritis Cartilage. 2014; 22: 464-471.
- 10Hartmann M, Kreuzpointner F, Haefner R, Michels H, Schwirtz A, Haas JP. Effects of juvenile idiopathic arthritis on kinematics and kinetics of the lower extremities call for consequences in physical activities recommendations. Int J Pediatr. 2010; 2010: 835984.
- 11Merker J, Hartmann M, Kreuzpointner F, Schwirtz A, Haas J-P. Pathophysiology of juvenile idiopathic arthritis induced pes planovalgus in static and walking condition: a functional view using 3D gait analysis. Pediatr Rheumatol Online J. 2015; 13: 21.
- 12Chester VL, Wrigley AT. The identification of age-related differences in kinetic gait parameters using principal component analysis. Clin Biomech Bristol Avon. 2008; 23: 212-220.
- 13Chester VL, Tingley M, Biden EN. A comparison of kinetic gait parameters for 3-13 year olds. Clin Biomech Bristol Avon. 2006; 21: 726-732.
- 14Lobet S, Detrembleur C, Massaad F, Hermans C. Three-dimensional gait analysis can shed new light on walking in patients with haemophilia. ScientificWorldJournal. 2013; 2013: 284358.
- 15Bladen M, Alderson L, Khair K, Liesner R, Green J, Main E. Can early subclinical gait changes in children with haemophilia be identified using the GAITRite walkway. Haemophilia. 2007; 13: 542-547.
- 16Suckling LB, Stephensen D, Cramp MC, Mahaffey R, Drechsler WI. Identifying biomechanical gait parameters in adolescent boys with haemophilia using principal component analysis. Haemophilia. 2018; 24(1): 149-155.
- 17Stephensen D, Drechsler W, Winter M, Scott O. Comparison of biomechanical gait parameters of young children with haemophilia and those of age-matched peers. Haemophilia. 2009; 15: 509-518.
- 18Stephensen D, Taylor S, Bladen M, Drechsler WI. Relationship between physical function and biomechanical gait patterns in boys with haemophilia. Haemophilia. 2016; 22: e512-e518.
- 19Forneris E, Andreacchio A, Pollio B, et al. Gait analysis in children with haemophilia: first Italian experience at the Turin Haemophilia Centre. Haemophilia. 2016; 22: e184-e191.
- 20Zijlstra W, Prokop T, Berger W. Adaptability of leg movements during normal treadmill walking and split-belt walking in children. Gait Posture. 1996; 4: 212-221.
10.1016/0966-6362(95)01065-3 Google Scholar
- 21Hof AL. Scaling gait data to body size. Gait Posture. 1996; 4: 222-223.
10.1016/0966-6362(95)01057-2 Google Scholar
- 22Kraan CM, Tan AHJ, Cornish KM. The developmental dynamics of gait maturation with a focus on spatiotemporal measures. Gait Posture. 2017; 51: 208-217.
- 23Ganley KJ, Powers CM. Gait kinematics and kinetics of 7-year-old children: a comparison to adults using age-specific anthropometric data. Gait Posture. 2005; 21: 141-145.
- 24Dusing SC, Thorpe DE. A normative sample of temporal and spatial gait parameters in children using the GAITRite electronic walkway. Gait Posture. 2007; 25: 135-139.
- 25Lobet S, Detrembleur C, Francq B, Hermans C. Natural progression of blood-induced joint damage in patients with haemophilia: clinical relevance and reproducibility of three-dimensional gait analysis. Haemophilia. 2010; 16: 813-821.
- 26Lobet S, Hermans C, Bastien GJ, Massaad F, Detrembleur C. Impact of ankle osteoarthritis on the energetics and mechanics of gait: the case of hemophilic arthropathy. Clin Biomech Bristol Avon. 2012; 27: 625-631.
- 27Lobet S, Detrembleur C, Hermans C. Impact of multiple joint impairments on the energetics and mechanics of walking in patients with haemophilia. Haemophilia. 2013; 19: e66-e72.
- 28Srivastava A, Brewer AK, Mauser-Bunschoten EP, et al. Guidelines for the management of hemophilia. Haemophilia. 2013; 19: e1-e47.
- 29Lobet S, Hermans C, Pasta G, Detrembleur C. Body structure versus body function in haemophilia: the case of haemophilic ankle arthropathy. Haemophilia. 2011; 17: 508-515.
- 30Arnold WD, Hilgartner MW. Hemophilic arthropathy. Current concepts of pathogenesis and management. J Bone Joint Surg Am. 1977; 59: 287-305.
- 31Pettersson H, Ahlberg A, Nilsson IM. A radiologic classification of hemophilic arthropathy. Clin Orthop. 1980; 149: 153-159.
- 32Rodríguez-Merchán EC. Effects of hemophilia on articulations of children and adults. Clin Orthop. 1996; 328: 7-13.
- 33Cubukcu D, Sarsan A, Alkan H. Relationships between pain, function and radiographic findings in osteoarthritis of the knee: A cross-sectional study. Arthritis. 2012; 2012: 984060.
- 34Brunel T, Lobet S, Deschamps K, et al. Reliability and clinical features associated with the IPSG MRI tibiotalar and subtalar joint scores in children, adolescents and young adults with haemophilia. Haemophilia. 2017; 24: 141-148.
- 35Lundin B, Manco-Johnson ML, Ignas DM, et al. An MRI scale for assessment of haemophilic arthropathy from the International Prophylaxis Study Group. Haemophilia. 2012; 18: 962-970.
- 36Hassan J, van der Net J, Helders PJM, Prakken BJ, Takken T. Six-minute walk test in children with chronic conditions. Br J Sports Med. 2010; 44: 270-274.
- 37Paap E, van der Net J, Helders PJM, Takken T. Physiologic response of the six-minute walk test in children with juvenile idiopathic arthritis. Arthritis Rheum. 2005; 53: 351-356.
- 38Zaino CA, Marchese VG, Westcott SL. Timed up and down stairs test: preliminary reliability and validity of a new measure of functional mobility. Pediatr Phys Ther. 2004; 16: 90-98.
- 39Budiman-Mak E, Conrad K, Stuck R, Matters M. Theoretical model and Rasch analysis to develop a revised Foot Function Index. Foot Ankle Int. 2006; 27: 519-527.
- 40Stoquart G, Detrembleur C, Lejeune T. Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking. Neurophysiol Clin Neurophysiol. 2008; 38: 105-116.
- 41Gilbert MS. Prophylaxis: musculoskeletal evaluation. Semin Hematol. 1993; 30: 3-6.
- 42Dunn AL. Pathophysiology, diagnosis and prevention of arthropathy in patients with haemophilia. Haemophilia. 2011; 17: 571-578.
- 43van Meegeren MER, Roosendaal G, Jansen NWD, Lafeber FPJG, Mastbergen SC. Blood-induced joint damage: the devastating effects of acute joint bleeds versus micro-bleeds. Cartilage. 2013; 4: 313-320.
- 44Silva M, Luck JV, Quon D, et al. Inter- and intra-observer reliability of radiographic scores commonly used for the evaluation of haemophilic arthropathy. Haemophilia. 2008; 14: 504-512.