Self-heating measurements under cyclic loading to identify history effects on HCF properties of high-strength low-alloy steel: Part I—Experimental investigations
Corresponding Author
Julien Louge
ENSTA Bretagne - IRDL, UMR CNRS 6027 - 2, rue Franois Verny, Brest Cedex 9, F-29806 France
ArcelorMittal Global R&D - BP 30320, Maizières-lès-Metz Cedex, F-57283 France
Correspondence
Julien Louge, ENSTA Bretagne - IRDL, UMR CNRS 6027 - 2, rue Franois Verny, F-29806 Brest Cedex 9, France.
Email: [email protected]
Search for more papers by this authorSylvain Moyne
ENSTA Bretagne - IRDL, UMR CNRS 6027 - 2, rue Franois Verny, Brest Cedex 9, F-29806 France
Search for more papers by this authorCédric Doudard
ENSTA Bretagne - IRDL, UMR CNRS 6027 - 2, rue Franois Verny, Brest Cedex 9, F-29806 France
Search for more papers by this authorSylvain Calloch
ENSTA Bretagne - IRDL, UMR CNRS 6027 - 2, rue Franois Verny, Brest Cedex 9, F-29806 France
Search for more papers by this authorBastien Weber
ArcelorMittal Global R&D - BP 30320, Maizières-lès-Metz Cedex, F-57283 France
Search for more papers by this authorRémi Munier
ArcelorMittal Global R&D - BP 30320, Maizières-lès-Metz Cedex, F-57283 France
Search for more papers by this authorCorresponding Author
Julien Louge
ENSTA Bretagne - IRDL, UMR CNRS 6027 - 2, rue Franois Verny, Brest Cedex 9, F-29806 France
ArcelorMittal Global R&D - BP 30320, Maizières-lès-Metz Cedex, F-57283 France
Correspondence
Julien Louge, ENSTA Bretagne - IRDL, UMR CNRS 6027 - 2, rue Franois Verny, F-29806 Brest Cedex 9, France.
Email: [email protected]
Search for more papers by this authorSylvain Moyne
ENSTA Bretagne - IRDL, UMR CNRS 6027 - 2, rue Franois Verny, Brest Cedex 9, F-29806 France
Search for more papers by this authorCédric Doudard
ENSTA Bretagne - IRDL, UMR CNRS 6027 - 2, rue Franois Verny, Brest Cedex 9, F-29806 France
Search for more papers by this authorSylvain Calloch
ENSTA Bretagne - IRDL, UMR CNRS 6027 - 2, rue Franois Verny, Brest Cedex 9, F-29806 France
Search for more papers by this authorBastien Weber
ArcelorMittal Global R&D - BP 30320, Maizières-lès-Metz Cedex, F-57283 France
Search for more papers by this authorRémi Munier
ArcelorMittal Global R&D - BP 30320, Maizières-lès-Metz Cedex, F-57283 France
Search for more papers by this authorAbstract
High cycle fatigue properties of steels are usually characterized in the as-delivered state of the material. However, forming process, variable amplitude and accidental loading, called load history, could affect HCF properties. Given that investigating those history effect of fatigue properties by means of regular fatigue test would be very time consuming, self-heating measurements under cyclic loading were considered. Two load history effects were studied, a macroscopic plastic pre-strain and a cyclic pre-loading, by means of self-heating measurements under cyclic loading. All of the findings were used to propose a modification of a probabilistic two-scale model, which links self-heating measurements to HCF properties, given in the accompanying paper.
Open Research
DATA AVAILABILITY STATEMENT
Research data are not shared.
REFERENCES
- 1Chin CH, Rahim AAA, Abdullah S, Singh SSK, Nor NM. Acceptability of the effective strain damage model for fatigue life assessment considering the load sequence effect for automotive coil spring. Eng Fail Anal. 2021; 126: 105462.
- 2Das B, Paul SK, Singh A, Arora KS, Shome M. The effect of thickness variation and pre-strain on the cornering fatigue life prediction of a dp600 steel wheel disc. Int J Fatigue. 2020; 139: 105799.
- 3Gerin B, Pessard E, Morel F, Verdu C, Mary A. Effect of cold forming on the high cycle fatigue behaviour of a 27mncr5 steel. Procedia Eng. 2015; 133: 603-612.
- 4Li S, Dong Y, Soares CG. A procedure to generate design load-time histories for fatigue strength assessment of offshore structures. Ocean Eng. 2020; 213: 107707.
- 5Porter TR. Method of analysis and prediction for variable amplitude fatigue crack growth. Eng Fract Mech. 1972; 4(4): 717-736.
- 6Yan B, Belanger P, Citrin K. Effect of forming strain on fatigue performance of a mild automotive steel. SAE Trans. 2001: 62-71.
- 7Miner MA. Cumulative damage in fatigue. J Appl Mech. 1945; 12: 159-164.
- 8Xiong JJ, Shenoi RA. A load history generation approach for full-scale accelerated fatigue tests. Eng Fract Mech. 2008; 75(10): 3226-3243.
- 9Charkaluk E, Constantinescu A. Dissipative aspects in high cycle fatigue. Mech Mater. 2009; 41(5): 483-494.
- 10Chrysochoos A, Louche H. An infrared image processing to analyse the calorific effects accompanying strain localisation. Int J Eng Sci. 2000; 38(16): 1759-1788.
- 11Doudard C, Calloch S. Influence of hardening type on self-heating of metallic materials under cyclic loadings at low amplitude. Eur J Mech A Solids. 2009; 28(2): 233-240.
- 12Ezanno A, Doudard C, Calloch S, Heuzé J-L. A new approach to characterizing and modeling the high cycle fatigue properties of cast materials based on self-heating measurements under cyclic loadings. Int J Fatigue. 2013; 47: 232-243.
- 13La Rosa G, Risitano A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. Int J Fatigue. 2000; 22(1): 65-73.
- 14Munier R, Doudard C, Calloch S, Weber B. Identification of the micro-plasticity mechanisms at the origin of self-heating under cyclic loading with low stress amplitude. Int J Fatigue. 2017; 103: 122-135.
- 15Stromeyer CE. The determination of fatigue limits under alternating stress conditions. Proc R Soc Lond A. 1914; 90(620): 411-425.
- 16Amiri M, Khonsari MM. Life prediction of metals undergoing fatigue load based on temperature evolution. Mater Sci Eng A. 2010; 527(6): 1555-1559.
- 17Amiri M, Khonsari MM. Rapid determination of fatigue failure based on temperature evolution: fully reversed bending load. Int J Fatigue. 2010; 32(2): 382-389.
- 18Amiri M, Khonsari MM. On the role of entropy generation in processes involving fatigue. Entropy. 2011; 14(1): 24-31.
- 19Berthel B, Chrysochoos A, Wattrisse B, Galtier A. Infrared image processing for the calorimetric analysis of fatigue phenomena. Exp Mech. 2008; 48(1): 79-90.
- 20Berthel B, Wattrisse B, Chrysochoos A, Galtier A. Thermographic analysis of fatigue dissipation properties of steel sheets. Strain. 2007; 43(3): 273-279.
- 21Boulanger T, Chrysochoos A, Mabru C, Galtier A. Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels. Int J Fatigue. 2004; 26(3): 221-229.
- 22Charkaluk E, Constantinescu A. Dissipation and fatigue damage. Mater Test. 2004; 46(10): 524-530.
- 23Chrysochoos A, Berthel B, Latourte F, Pagano S, Wattrisse B, Weber B. Local energy approach to steel fatigue. Strain. 2008; 44(4): 327-334.
- 24Connesson N, Maquin F, Pierron F. Dissipated energy measurements as a marker of microstructural evolution: 316l and dp600. Acta Mater. 2011; 59(10): 4100-4115.
- 25Curà F, Curti G, Sesana R. A new iteration method for the thermographic determination of fatigue limit in steels. Int J Fatigue. 2005; 27(4): 453-459.
- 26Dengel D, Harig H. Estimation of the fatigue limit by progressively-increasing load tests. Fatigue Fract Eng Mater Struct. 1980; 3(2): 113-128.
- 27Doudard C, Calloch S, Hild F, Cugy P, Galtier A. Identification of the scatter in high cycle fatigue from temperature measurements. Comptes Rendus Mécanique. 2004; 332(10): 795-801.
- 28Doudard C, Poncelet M, Calloch S, Boué C, Hild F, Galtier A. Determination of an hcf criterion by thermal measurements under biaxial cyclic loading. Int J Fatigue. 2007; 29(4): 748-757.
- 29Fargione G, Geraci A, La Rosa G, Risitano A. Rapid determination of the fatigue curve by the thermographic method. Int J Fatigue. 2002; 24(1): 11-19.
- 30Giancane S, Chrysochoos A, Dattoma V, Wattrisse B. Deformation and dissipated energies for high cycle fatigue of 2024-t3 aluminium alloy. Theor Appl Fract Mech. 2009; 52(2): 117-121.
- 31Guo Q, Guo X, Fan J, Syed R, Wu C. An energy method for rapid evaluation of high-cycle fatigue parameters based on intrinsic dissipation. Int J Fatigue. 2015; 80: 136-144.
- 32Guo Q, Zaïri F, Guo X. An intrinsic dissipation model for high-cycle fatigue life prediction. Int J Mech Sci. 2018; 140: 163-171.
- 33Guo Q, Zaïri F, Yang W. Evaluation of intrinsic dissipation based on self-heating effect in high-cycle metal fatigue. Int J Fatigue. 2020; 139: 105653.
- 34Harry R, Joubert F, Gomaa A. Measuring the actual endurance limit of one specimen using a nondestructive method. J Eng Mater Technol. 1981; 103(1): 71-76.
- 35Jiang L, Wang H, Liaw PK, Brooks CR, Chen L, Klarstrom DL. Temperature evolution and life prediction in fatigue of superalloys. Metall Mater Trans A. 2004; 35(3): 839-848.
- 36Kaleta J, Blotny R, Harig H. Energy stored in a specimen under fatigue limit loading conditions. J Test Eval. 1991; 19(4): 326-333.
- 37Liakat M, Khonsari MM. On the anelasticity and fatigue fracture entropy in high-cycle metal fatigue. Mater Des. 2015; 82: 18-27.
- 38Luong MP. Fatigue limit evaluation of metals using an infrared thermographic technique. Mech Mater. 1998; 28(1-4): 155-163.
- 39Maquin F, Pierron F. Heat dissipation measurements in low stress cyclic loading of metallic materials: from internal friction to micro-plasticity. Mech Mater. 2009; 41(8): 928-942.
- 40Meneghetti G. Analysis of the fatigue strength of a stainless steel based on the energy dissipation. Int J Fatigue. 2007; 29(1): 81-94.
- 41Meneghetti G, Ricotta M, Atzori B. A synthesis of the push-pull fatigue behaviour of plain and notched stainless steel specimens by using the specific heat loss. Fatigue Fract Eng Mater Struct. 2013; 36(12): 1306-1322.
- 42Nourian-Avval A, Khonsari MM. Rapid prediction of fatigue life based on thermodynamic entropy generation. Inter J Fatigue. 2021; 145: 106105.
- 43Poncelet M, Doudard C, Calloch S, Hild F, Weber B, Galtier A. Prediction of self-heating measurements under proportional and non-proportional multiaxial cyclic loadings. Comptes Rendus Mécanique. 2007; 335(2): 81-86.
- 44Poncelet M, Doudard C, Calloch S, Weber B, Hild F. Probabilistic multiscale models and measurements of self-heating under multiaxial high cycle fatigue. J Mech Phys Solids. 2010; 58(4): 578-593.
- 45Risitano A, Risitano G. Cumulative damage evaluation of steel using infrared thermography. Theor Appl Fract Mech. 2010; 54(2): 82-90.
- 46Risitano A, Risitano G. Cumulative damage evaluation in multiple cycle fatigue tests taking into account energy parameters. Inter J Fatigue. 2013; 48: 214-222.
- 47Teng Z, Wu H, Boller C, Starke P. Thermography in high cycle fatigue short-term evaluation procedures applied to a medium carbon steel. Fatigue Fract Eng Mater Struct. 2020; 43(3): 515-526.
- 48Wang XG, Crupi V, Guo XL, Zhao YG. Quantitative thermographic methodology for fatigue assessment and stress measurement. Inter J Fatigue. 2010; 32(12): 1970-1976.
- 49Yang B, Liaw PK, Wang H et al. Thermographic investigation of the fatigue behavior of reactor pressure vessel steels. Mater Sci Eng A. 2001; 314(1-2): 131-139.
- 50Yang B, Wang G, Peter WH, et al. Thermal-imaging technologies for detecting damage during high-cycle fatigue. Metall Mater Trans A. 2004; 35(1): 15-23.
- 51Yang B. Thermographic detection of fatigue damage of reactor pressure vessel (rpv) steels. J Mater Eng Perf. 2003; 12(3): 345-353.
- 52Yang W, Guo X, Guo Q, Fan J. Rapid evaluation for high-cycle fatigue reliability of metallic materials through quantitative thermography methodology. Int J Fatigue. 2019; 124: 461-472.
- 53Yang WP, Fan JL, Guo Q, Guo XL. Experimental procedure for energy dissipation estimation during high-cycle fatigue loading of metallic material. Exp Mech. 2020; 60(5): 695-712.
- 54Louge J, Moyne S, Doudard C, Calloch S, Weber B, Munier R. Interest of the self-heating measurements under cyclic loading to identify history effects on hcf properties of high-strength low-alloy steel: part II—modeling. Fatigue Fract Eng Mater Struct. 2022.
- 55Munier R, Doudard C, Calloch S, Weber B. Determination of high cycle fatigue properties of a wide range of steel sheet grades from self-heating measurements. Int J Fatigue. 2014; 63: 46-61.
- 56Mareau C, Favier V, Weber B, Galtier A, Berveiller M. Micromechanical modeling of the interactions between the microstructure and the dissipative deformation mechanisms in steels under cyclic loading. Int J Plast. 2012; 32: 106-120.
- 57Doudard C, Calloch S, Cugy P, Galtier A, Hild F. A probabilistic two-scale model for high-cycle fatigue life predictions. Fatigue Fract Eng Mater Struct. 2005; 28(3): 279-288.
- 58Aguirre-Guerrero D, Juárez-Hernández A, Hernández-Rodríguez MAL, Morales R, Ruiz I. The effect of pre-strain on fatigue for a high strength low alloy (HSLA) steel. Metalurgija. 2013; 52(2): 227-230.
- 59Berchem K, Hocking MG. The influence of pre-straining on the high-cycle fatigue performance of two hot-dip galvanised car body steels. Mater Charact. 2007; 58(7): 593-602.
- 60Fredriksson K, Melander A, Hedman M. Influence of prestraining and ageing on fatigue properties of high-strength sheet steels. Int J Fatigue. 1988; 10(3): 139-151.
- 61Kang M, Aono Y, Noguchi H. Effect of prestrain on and prediction of fatigue limit in carbon steel. Int J Fatigue. 2007; 29(9-11): 1855-1862.
- 62Munier R, Doudard C, Calloch S, Weber B, Facchinetti M. Contribution of kinematical and thermal full-field measurements for mechanical properties identification: application to high cycle fatigue of steels. Exp Mech. 2012; 52(7): 743-756.
- 63Saintier N, Palin-Luc T, Bidouard H, et al. Overload effects on a ferritic-baintic steel and a cast aluminium alloy: two very different behaviours. Mater Sci Technol. 2011; 42(10): 845-854.
- 64Walker J, Thomas DJ, Gao Y. Effects of shot peening and pre-strain on the fatigue life of dual phase martensitic and bainitic steels. J Manuf Process. 2017; 26: 419-424.
- 65De AK, De Blauwe K, Vandeputte S, De Cooman BC. Effect of dislocation density on the low temperature aging behavior of an ultra low carbon bake hardening steel. J Alloys Compd. 2000; 310(1-2): 405-410.
- 66Dini G, Ueji R, Najafizadeh A, Monir-Vaghefi SM. Flow stress analysis of twip steel via the XRD measurement of dislocation density. Mater Sci Eng A. 2010; 527(10-11): 2759-2763.
- 67Hutchinson B, Ridley N. On dislocation accumulation and work hardening in hadfield steel. Scr Mater. 2006; 55(4): 299-302.
- 68Gustavsson A, Melander A. Variable-amplitude fatigue of a dual-phase sheet steel subjected to prestrain. Int J Fatigue. 1994; 16(7): 503-509.
- 69Libertiny GZ, Topper TH, Leis BN. The effect of large prestrains on fatigue. Exp Mech. 1977; 17(2): 64-68.
- 70Nagase Y, Suzuki S. On the decrease of fatigue limit due to small prestrain. J Eng Mater Technol. 1992; 114(3): 317-322.
- 71Nakajima K, Kamiishi S, Yokoe M, Miyata T. The influence of microstructural morphology and prestrain on fatigue crack propagation of dual-phase steels in the near-threshold region. ISIJ Int. 1999; 39(5): 486-492.
- 72Uemura T. A fatigue life estimation of specimens excessively prestrained in tension. Fatigue Fract Eng Mater Struct. 1998; 21(2): 151-158.