Evaluating MTS criterion in predicting mixed-mode crack extension under different loading conditions
Corresponding Author
Mosleh Eftekhari
Department of Mining Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
Correspondence
Mosleh Eftekhari, Department of Mining Engineering, Faculty of Engineering, Tarbiat Modares University, Jalal AleAhmad, Nasr Street, Tehran 14115-14, Iran.
Email: [email protected]
Search for more papers by this authorChaoshui Xu
School of Civil, Environmental and Mining Engineering, University of Adelaide, Adelaide, Australia
Search for more papers by this authorCorresponding Author
Mosleh Eftekhari
Department of Mining Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
Correspondence
Mosleh Eftekhari, Department of Mining Engineering, Faculty of Engineering, Tarbiat Modares University, Jalal AleAhmad, Nasr Street, Tehran 14115-14, Iran.
Email: [email protected]
Search for more papers by this authorChaoshui Xu
School of Civil, Environmental and Mining Engineering, University of Adelaide, Adelaide, Australia
Search for more papers by this authorAbstract
The maximum tangential stress (MTS) criterion is one of the most widely used criteria for predicting the direction of crack extension. The suitability of this criterion is examined under different loading conditions using the extended finite element method (XFEM). Experimental and numerical results reported in the literature are considered to evaluate the validity and accuracy of the criterion. The results demonstrate that the MTS criterion evaluated by stress intensity factors (SIFs) can accurately predict the direction of crack propagation in specimens under direct tensile loading. This criterion overestimates the angle of crack initiation in the specimen under indirect tensile loading but underestimates the angle in the specimen subjected to 3-point bending. It is concluded that the MTS criterion based on SIFs could not accurately predict the direction of the crack initiation, which could, however, be determined properly based on the stress distribution around the crack tip obtained by the XFEM numerical models.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- 1Aliha M, Ayatollahi M, Pakzad R. Brittle fracture analysis using a ring-shape specimen containing two angled cracks. Int J Fract. 2008; 153(1): 63-68.
- 2Ghouli S, Ayatollahi MR, Bushroa AR. Fracture characterization of ceria partially stabilized zirconia using the GMTSN criterion. Eng Fract Mech. 2018; 199: 647-657.
- 3Erdogan F, Sih G. On the crack extension in plates under plane loading and transverse shear. J Basic Eng. 1963; 85(4): 519-525.
10.1115/1.3656897 Google Scholar
- 4Hussain M, Pu S, Underwood J. Strain energy release rate for a crack under combined mode I and mode II. Proceedings of the 1973 National Symposium on Fracture Mechanics, part II1974.
- 5Nuismer R. An energy release rate criterion for mixed mode fracture. Int J Fract. 1975; 11(2): 245-250.
- 6Palaniswamy K, Knauss W. Propagation of a crack under general, in-plane tension. Int J Fract Mech. 1972; 8(1): 114-117.
- 7Sih GC. Strain-energy-density factor applied to mixed mode crack problems. Int J Fract. 1974; 10(3): 305-321.
- 8Theocaris P, Andrianopoulos N. A modified strain-energy density criterion applied to crack propagation. J Appl Mech. 1982; 49(1): 81-86.
- 9Isaksson P, Ståhle P. Mode II crack paths under compression in brittle solids–a theory and experimental comparison. Int J Solids Struct. 2002; 39(8): 2281-2297.
- 10Lin Q, Fakhimi A, Haggerty M, Labuz J. Initiation of tensile and mixed-mode fracture in sandstone. Int J Rock Mech Min Sci. 2009; 46(3): 489-497.
- 11Song L, Huang S, Yang S. Experimental investigation on criterion of three-dimensional mixed-mode fracture for concrete. Cem Concr Res. 2004; 34(6): 913-916.
- 12Xeidakis G, Samaras I, Zacharopoulos D, Papakaliatakis G. Trajectories of unstably growing cracks in mixed mode I?II loading of marble beams. Rock Mech Rock Eng. 1997; 30(1): 19-33.
- 13Eftekhari M, Baghbanan A, Mohtarami E, Hashemolhosseini H. Determination of crack initiation and propagation in two disc shaped specimens using the improved maximum tangential stress criterion. J Theor Appl Mech. 2017; 55: 469-480.
- 14Wang C, Zhu Z, Liu H. On the I-II mixed mode fracture of granite using four-point bend specimen. Fatigue Fract Eng Mater Struct. 2016; 39(10): 1193-1203.
- 15Wang H, Li Y, Cao S, et al. Fracture toughness analysis of HCCD specimens of Longmaxi shale subjected to mixed mode I-II loading. Eng Fract Mech. 2020; 239:107299.
- 16Torabi A, Razavi S, Berto F, Ayatollahi M. On suitability of the averaged strain energy density criterion in predicting mixed Mode I/II brittle fracture of blunt V-notches with negative Mode I contributions. Strength Mater. 2019; 51(5): 770-785.
- 17Xi X, Wu X, Guo Q, Cai M. Modelling the crack initiation and propagation of notched rock beam under the three-point bending load. Adv Civil Eng. 2020; 2020: 1-11.
- 18Eftekhari M, Baghbanan A, Hashemolhosseini H. Fracture propagation in a cracked semicircular bend specimen under mixed mode loading using extended finite element method. Arab J Geosci. 2015; 8(11): 9635-9646.
- 19Eftekhari M, Baghbanan A, Hashemolhosseini H, Amrollahi H. Mechanism of fracture in macro-and micro-scales in hollow centre cracked disc specimen. J Cent South Univ. 2015; 22(11): 4426-4433.
- 20Eftekhari M, Baghbanan A, Hashemolhosseini H. Crack propagation in rock specimen under compressive loading using extended finite element method. Arab J Geosci. 2016; 9(2):145.
- 21Broek D. Elementary Engineering Fracture Mechanics. Springer Science & Business Media; 2012.
- 22Sih GC. Methods of Analysis and Solution of Crack Problems: Recent Developments in Fracture Mechanics, Theory and Methods of Solving Crack Problems. Springer; 1973.
10.1007/978-94-017-2260-5 Google Scholar
- 23Chang KJ. On the maximum strain criterion—a new approach to the angled crack problem. Eng Fract Mech. 1981; 14(1): 107-124.
- 24Razavi SMJ, Aliha MRM, Berto F. Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens. Theor Appl Fract Mech. 2018; 97: 419-425.
- 25Aliha M, Berto F, Mousavi A, Razavi S. On the applicability of ASED criterion for predicting mixed mode I+ II fracture toughness results of a rock material. Theor Appl Fract Mech. 2017; 92: 198-204.
- 26Tirosh J. Incipient fracture angle, fracture loci and critical stress for mixed mode loading. Eng Fract Mech. 1977; 9(3): 607-616.
- 27Tirosh J, Catz E. Mixed-mode fracture angle and fracture locus of materials subjected to compressive loading. Eng Fract Mech. 1981; 14(1): 27-38.
- 28Smith D, Ayatollahi M, Pavier M. The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading. Fatigue Fract Eng Mater Struct. 2001; 24(2): 137-150.
- 29Ayatollahi M, Rashidi Moghaddam M, Berto F. A generalized strain energy density criterion for mixed mode fracture analysis in brittle and quasi-brittle materials. Theor Appl Fract Mech. 2015; 79: 70-76.
- 30Mirsayar M, Park P. The role of T-stress on kinking angle of interface cracks. Mater Des. 2015; 80: 12-19.
- 31Mirsayar M. Mixed mode fracture analysis using extended maximum tangential strain criterion. Mater Des. 2015; 86: 941-947.
- 32Ayatollahi M, Abbasi H. Prediction of fracture using a strain based mechanism of crack growth. Build Res J. 2001; 49(3): 167-180.
- 33Shen B-T, Stephansson O. Modification of the G-criterion for crack propagation subjected to compression. Eng Fract Mech. 1994; 47(2): 177-189.
- 34Wu Z, Wong LNY. Frictional crack initiation and propagation analysis using the numerical manifold method. Comput Geotech. 2012; 39: 38-53.
- 35Bobet A. Fracture coalescence in rock materials: Experimental observations and numerical predictions. 1998.
- 36Al-Shayea NA. Crack propagation trajectories for rocks under mixed mode I–II fracture. Eng Geol. 2005; 81(1): 84-97.
- 37Aliha MRM, Ayatollahi M, Smith D, Pavier M. Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Eng Fract Mech. 2010; 77(11): 2200-2212.
- 38Matvienko YG. Maximum average tangential stress criterion for prediction of the crack path. Int J Fract. 2012; 176(1): 113-118.
- 39Ouchterlony F. Suggested methods for determining the fracture toughness of rock. Int J Rock Mech Min Sci. 1988; 25(2): 71-96.
- 40Fowell R, Hudson J, Xu C, Zhao X. Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens. Int J Rock Mech Min Sci (1997). 1995; 32(7): 57-64.
- 41Awaji H, Sato S. Combined mode fracture toughness measurement by the disk test. J Eng Mater Technol. 1978; 100(2): 175-182.
- 42Sanchez J. Application of the disk test to mode I-II fracture analysis. Master's thesis, University of Pittsburgh, Pittsburgh, USA. 1979.
- 43Atkinson C, Smelser R, Sanchez J. Combined mode fracture via the cracked Brazilian disk test. Int J Fract. 1982; 18(4): 279-291.
- 44Kuruppu M. Fracture toughness measurement using chevron notched semi-circular bend specimen. Int J Fract. 1997; 86(4): L33-L38.
- 45Choi S, Haberfield C, Johnston I. Determining the tensile strength of soft rock. Geotech Eng. 1988; 19(2): 209-226.
- 46Shiryaev A, Kotkis A. Methods for determining fracture toughness of brittle porous materials. Indust Lab. 1983; 48(9): 917-918.
- 47Wang Q-Z, Xing L. Determination of fracture toughness KIC by using the flattened Brazilian disk specimen for rocks. Eng Fract Mech. 1999; 64(2): 193-201.
- 48Wang Q, Jia X, Kou S, Zhang Z, Lindqvist P-A. The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results. Int J Rock Mech Min Sci. 2004; 41(2): 245-253.
- 49Thiercelin M. Fracture toughness and hydraulic fracturing. Int J Rock Mech Min Sci. 1989; 26(3–4): 177-183.
- 50Chong K, Kuruppu M. New specimen for fracture toughness determination for rock and other materials. Int J Fract. 1984; 26(2): R59-R62.
- 51Chong KP, Kuruppu MD, Kuszmaul JS. Fracture toughness determination of layered materials. Eng Fract Mech. 1987; 28(1): 43-54.
- 52Chong K, Kuruppu M. Mixed mode fracture analysis using new semi-circular specimens. Comput Struct. 1988; 30(4): 905-908.
- 53Ayatollahi M, Aliha M. Analysis of a new specimen for mixed mode fracture tests on brittle materials. Eng Fract Mech. 2009; 76(11): 1563-1573.
- 54Tutluoglu L, Keles C. Mode I fracture toughness determination with straight notched disk bending method. Int J Rock Mech Min Sci. 2011; 48(8): 1248-1261.
- 55Aliha M, Hosseinpour GR, Ayatollahi M. Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials. Rock Mech Rock Eng. 2013; 46(5): 1023-1034.
- 56Haghighat Pour PJ, Aliha M, Keymanesh M. Evaluating mode I fracture resistance in asphalt mixtures using edge notched disc bend ENDB specimen with different geometrical and environmental conditions. Eng Fract Mech. 2018; 190: 245-258.
- 57Mousavi S, Aliha M, Imani D. On the use of edge cracked short bend beam specimen for PMMA fracture toughness testing under mixed-mode I/II. Polym Test. 2020; 81:106199.
- 58Williams ML. On the stress distribution at the base of a stationary crack. J Appl Mech. 1957; 24(1): 109-114.
- 59Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng. 1999; 45(5): 601-620.
- 60Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int J Numer Methods Eng. 1999; 46(1): 131-150.
- 61Dolbow JE. An extended finite element method with discontinuous enrichment for applied mechanics. Northwestern University; 1999.
- 62Stolarska M, Chopp DL, Moës N, Belytschko T. Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng. 2001; 51(8): 943-960.
- 63Ri J, Hong H. Limit analysis of cracked structure by combination of extended finite element method with linear matching method. Eng Solid Mech. 2018; 6(2): 187-200.
10.5267/j.esm.2018.1.001 Google Scholar
- 64Richardson CL, Hegemann J, Sifakis E, Hellrung J, Teran JM. An XFEM method for modeling geometrically elaborate crack propagation in brittle materials. Int J Numer Methods Eng. 2011; 88(10): 1042-1065.
- 65Chang S-H, Lee C-I, Jeon S. Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Eng Geol. 2002; 66(1–2): 79-97.
- 66Ayatollahi M, Aliha M. Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading. Comput Mater Sci. 2007; 38(4): 660-670.
- 67Abd-Elhady A. Mixed mode I/II stress intensity factors through the thickness of disc type specimens. Eng Solid Mech. 2013; 1(4): 119-128.
10.5267/j.esm.2013.10.001 Google Scholar
- 68Fowell R, Xu C. The cracked chevron notched Brazilian disc test-geometrical considerations for practical rock fracture toughness measurement. Int J Rock Mech Mineral Sci Geomech Abstr. 1993; 30(7): 821-824.
- 69Ghazvinian A, Nejati HR, Sarfarazi V, Hadei MR. Mixed mode crack propagation in low brittle rock-like materials. Arab J Geosci. 2013; 6(11): 4435-4444.
- 70Aliha M, Bahmani A, Akhondi S. Mixed mode fracture toughness testing of PMMA with different three-point bend type specimens. Eur J Mech-A/Solids. 2016; 58: 148-162.
- 71Bobet A. The initiation of secondary cracks in compression. Eng Fract Mech. 2000; 66(2): 187-219.