An optimized deep learning model for human activity recognition using inertial measurement units
Corresponding Author
Sravan Kumar Challa
Department of ECE, NIT Jamshedpur, Jamshedpur, India
Correspondence
Sravan Kumar Challa, Department of ECE, NIT Jamshedpur, Jamshedpur, India.
Email: [email protected]
Search for more papers by this authorAkhilesh Kumar
Department of ECE, NIT Jamshedpur, Jamshedpur, India
Search for more papers by this authorVijay Bhaskar Semwal
Department of CSE, MANIT Bhopal, Bhopal, India
Search for more papers by this authorCorresponding Author
Sravan Kumar Challa
Department of ECE, NIT Jamshedpur, Jamshedpur, India
Correspondence
Sravan Kumar Challa, Department of ECE, NIT Jamshedpur, Jamshedpur, India.
Email: [email protected]
Search for more papers by this authorAkhilesh Kumar
Department of ECE, NIT Jamshedpur, Jamshedpur, India
Search for more papers by this authorVijay Bhaskar Semwal
Department of CSE, MANIT Bhopal, Bhopal, India
Search for more papers by this authorAbstract
Human activity recognition (HAR) has recently gained popularity due to its applications in healthcare, surveillance, human-robot interaction, and various other fields. Deep learning (DL)-based models have been successfully applied to the raw data captured through inertial measurement unit (IMU) sensors to recognize multiple human activities. Despite the success of DL-based models in human activity recognition, feature extraction remains challenging due to class imbalance and noisy data. Additionally, selecting optimal hyperparameter values for DL models is essential since they affect model performance. The hyperparameter values of some of the existing DL-based HAR models are chosen randomly or through the trial-and-error method. The random selection of these significant hyperparameters may be suitable for some applications, but sometimes it may worsen the model's performance in others. Hence, to address the above-mentioned issues, this research aims to develop an optimized DL model capable of recognizing various human activities captured through IMU sensors. The proposed DL-based HAR model combines convolutional neural network (CNN) layers and bidirectional long short-term memory (Bi-LSTM) units to simultaneously extract spatial and temporal sequence features from raw sensor data. The Rao-3 metaheuristic optimization algorithm has been adopted to identify the ideal hyperparameter values for the proposed DL model in order to enhance its recognition performance. The proposed DL model's performance is validated on PAMAP2, UCI-HAR, and MHEALTH datasets and achieved 94.91%, 97.16%, and 99.25% accuracies, respectively. The results reveal that the proposed DL model performs better than the existing state-of-the-art (SoTA) models.
CONFLICT OF INTEREST STATEMENT
The authors declare that they have no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in UCI Machine Learning Repository at https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones.
REFERENCES
- Abdel-Basset, M., Chang, V., Hawash, H., Chakrabortty, R. K., & Ryan, M. (2021). Deep learning approaches for human-centered IoT applications in smart indoor environments: A contemporary survey. Annals of Operations Research, 1–49. https://doi.org/10.1007/s10479-021-04164-3
- Abdel-Basset, M., Hawash, H., Chang, V., Chakrabortty, R. K., & Ryan, M. (2020). Deep learning for heterogeneous human activity recognition in complex iot applications. IEEE Internet of Things Journal, 9(8), 5653–5665.
- Ali, S. E., Khan, A. N., Zia, S., & Mukhtar, M. (2020). Human activity recognition system using smart phone-based accelerometer and machine learning. In In 2020 IEEE international conference on industry 4.0, artificial intelligence, and communications technology (IAICT) (pp. 69–74). IEEE. https://doi.org/10.1109/IAICT50021.2020.9172037
- Al-qaness, M. A., Dahou, A., Abd Elaziz, M., & Helmi, A. M. (2022). Multi-Res Att: Multilevel residual network with attention for human activity recognition using wearable sensors. IEEE Transactions on Industrial Informatics, 19(1), 144–152. https://doi.org/10.1109/TII.2022.3165875
- Andrade-Ambriz, Y. A., Ledesma, S., Ibarra-Manzano, M. A., Oros-Flores, M. I., & Almanza-Ojeda, D. L. (2022). Human activity recognition using temporal convolutional neural network architecture. Expert Systems with Applications, 191, 116287. https://doi.org/10.1016/j.eswa.2021.116287
- Anguita, D., Ghio, A., Oneto, L., Parra, X., & Reyes-Ortiz, J. L. (2013). A public domain dataset for human activity recognition using smartphones. In Esann (Vol. 3, p. 3). ESANN.
- Arirangan, S., & Kottursamy, K. (2023). Multi-scaled feature fusion enabled convolutional neural network for predicting fibrous dysplasia bone disorder. Expert Systems, 40(4), e12882.
- Banos, O., Garcia, R., Holgado-Terriza, J. A., Damas, M., Pomares, H., Rojas, I., Saez, A., & Villalonga, C. (2014). mHealthDroid: A novel framework for agile development of mobile health applications. In International workshop on ambient assisted living (pp. 91–98). Springer.
10.1007/978-3-319-13105-4_14 Google Scholar
- Bhuyan, H. K., Chakraborty, C., Shelke, Y., & Pani, S. K. (2022). COVID-19 diagnosis system by deep learning approaches. Expert Systems, 39(3), e12776.
- Bijalwan, V., Semwal, V. B., Singh, G., & Crespo, R. G. (2022). Heterogeneous computing model for post-injury walking pattern restoration and postural stability rehabilitation exercise recognition. Expert Systems, 39(6), e12706.
- Catal, C., Tufekci, S., Pirmit, E., & Kocabag, G. (2015). On the use of ensemble of classifiers for accelerometer-based activity recognition. Applied Soft Computing, 37, 1018–1022. https://doi.org/10.1016/j.asoc.2015.01.025
- Challa, S. K., Kumar, A., & Semwal, V. B. (2021). A multibranch CNN-BiLSTM model for human activity recognition using wearable sensor data. The Visual Computer, 1–15, 4095–4109. https://doi.org/10.1007/s00371-021-02283-3
10.1007/s00371-021-02283-3 Google Scholar
- Chen, K., Yao, L., Zhang, D., Wang, X., Chang, X., & Nie, F. (2019). A semisupervised recurrent convolutional attention model for human activity recognition. IEEE Transactions on Neural Networks and Learning Systems, 31(5), 1747–1756. https://doi.org/10.1109/TNNLS.2019.2927224
- Chen, Y., Zhong, K., Zhang, J., Sun, Q., & Zhao, X. (2016). LSTM networks for mobile human activity recognition. In 2016 International conference on artificial intelligence: technologies and applications (pp. 50–53). Atlantis Press.
10.2991/icaita-16.2016.13 Google Scholar
- Chen, Z., Jiang, C., Xiang, S., Ding, J., Wu, M., & Li, X. (2019). Smartphone sensor-based human activity recognition using feature fusion and maximum full a posteriori. IEEE Transactions on Instrumentation and Measurement, 69(7), 3992–4001. https://doi.org/10.1109/TIM.2019.2945467
- Cheng, X., Zhang, L., Tang, Y., Liu, Y., Wu, H., & He, J. (2022). Real-time human activity recognition using conditionally parametrized convolutions on mobile and wearable devices. IEEE Sensors Journal, 22, 5889–5901. https://doi.org/10.1109/JSEN.2022.3149337
- Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259. https://doi.org/10.3115/v1/W14-4012
10.3115/v1/W14-4012 Google Scholar
- Cruciani, F., Vafeiadis, A., Nugent, C., Cleland, I., McCullagh, P., Votis, K., Giakoumis, D., Tzovaras, D., Chen, L., & Hamzaoui, R. (2020). Feature learning for human activity recognition using convolutional neural networks. CCF Transactions on Pervasive Computing and Interaction, 2(1), 18–32. https://doi.org/10.1007/s42486-020-00026-2
10.1007/s42486-020-00026-2 Google Scholar
- Dahou, A., Al-qaness, M. A., Abd Elaziz, M., & Helmi, A. (2022). Human activity recognition in IoHT applications using arithmetic optimization algorithm and deep learning. Measurement, 199, 111445.
- Dewangan, D. K., & Sahu, S. P. (2020). Deep learning-based speed bump detection model for intelligent vehicle system using raspberry pi. IEEE Sensors Journal, 21(3), 3570–3578. https://doi.org/10.1109/JSEN.2020.3027097
- Dewangan, D. K., & Sahu, S. P. (2021). RCNet: Road classification convolutional neural networks for intelligent vehicle system. Intelligent Service Robotics, 14(2), 199–214. https://doi.org/10.1007/s11370-020-00343-6
- Dua, N., Singh, S. N., & Semwal, V. B. (2021). Multi-input CNN-GRU based human activity recognition using wearable sensors. Computing, 103(7), 1461–1478. https://doi.org/10.1007/s00607-021-00928-8
- Feng, Z., Mo, L., & Li, M. (2015, August). A random Forest-based ensemble method for activity recognition. In 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (Vol. 2015, pp. 5074–5077). IEEE. https://doi.org/10.1109/EMBC.2015.7319532
10.1109/EMBC.2015.7319532 Google Scholar
- Gu, W., Gao, F., Li, R., & Zhang, J. (2021). Learning universal network representation via link prediction by graph convolutional neural network. Journal of Social Computing, 2(1), 43–51.
10.23919/JSC.2021.0001 Google Scholar
- Gumaei, A., Hassan, M. M., Alelaiwi, A., & Alsalman, H. (2019). A hybrid deep learning model for human activity recognition using multimodal body sensing data. IEEE Access, 7, 99152–99160. https://doi.org/10.1109/ACCESS.2019.2927134
- Guo, M., Wang, Z., Yang, N., Li, Z., & An, T. (2018). A multisensor multiclassifier hierarchical fusion model based on entropy weight for human activity recognition using wearable inertial sensors. IEEE Transactions on Human-Machine Systems, 49(1), 105–111. https://doi.org/10.1109/THMS.2018.2884717
10.1109/THMS.2018.2884717 Google Scholar
- Hammerla, N. Y., Halloran, S., & Plötz, T. (2016). Deep, convolutional, and recurrent models for human activity recognition using wearables. arXiv preprint arXiv:1604.08880.
- Hartpence, B., & Kwasinski, A. (2021). CNN and MLP neural network ensembles for packet classification and adversary defense. Intelligent and Converged Networks, 2(1), 66–82.
10.23919/ICN.2020.0023 Google Scholar
- Helmi, A. M., Al-Qaness, M. A., Dahou, A., Damaševičius, R., Krilavičius, T., & Elaziz, M. A. (2021). A novel hybrid gradient-based optimizer and grey wolf optimizer feature selection method for human activity recognition using smartphone sensors. Entropy, 23(8), 1065.
- Hernández, J., Cabido, R., Montemayor, A. S., & Pantrigo, J. J. (2014). Human activity recognition based on kinematic features. Expert Systems, 31(4), 345–353. https://doi.org/10.1111/exsy.12013
- Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Huang, H., Zeng, Z., Yao, D., Pei, X., & Zhang, Y. (2021). Spatial-temporal ConvLSTM for vehicle driving intention prediction. Tsinghua Science and Technology, 27(3), 599–609.
- Issa, M. E., Helmi, A. M., Al-Qaness, M. A., Dahou, A., Abd Elaziz, M., & Damaševičius, R. (2022). Human activity recognition based on embedded sensor data fusion for the internet of healthcare things. Healthcare, 10(6), 1084.
- Jain, R., Semwal, V. B., & Kaushik, P. (2022). Deep ensemble learning approach for lower extremity activities recognition using wearable sensors. Expert Systems, 39(6), e12743.
- Liu, F., Zhang, Z., & Zhou, R. (2021). Automatic modulation recognition based on CNN and GRU. Tsinghua Science and Technology, 27(2), 422–431.
- Madasu, S. D., Kumar, M. S., & Singh, A. K. (2016). A strawberry algorithm based automatic generation control of a two-area multisource interconnected power system. International Journal of Mechanical Engineering and Robotics Research, 7(2), 208–212. https://doi.org/10.18178/ijmerr.7.2.208-212
10.18178/ijmerr.7.2.208-212 Google Scholar
- Madhuranga, D., Madushan, R., Siriwardane, C., & Gunasekera, K. (2021). Real-time multimodal ADL recognition using convolution neural networks. The Visual Computer, 37(6), 1263–1276. https://doi.org/10.1007/s00371-020-01864-y
- Nguyen, H. D., Tran, K. P., Zeng, X., Koehl, L., & Tartare, G. (2019). Wearable sensor data based human activity recognition using machine learning: A new approach, arXiv preprint arXiv:1905.03809.
- Piyathilaka, L., & Kodagoda, S. (2015). Human activity recognition for domestic robots. In Field and service robotics (pp. 395–408). Springer. https://doi.org/10.1007/978-3-319-07488-7_27
10.1007/978-3-319-07488-7_27 Google Scholar
- Rani, S., Babbar, H., Coleman, S., Singh, A., & Aljahdali, H. M. (2021). An efficient and lightweight deep learning model for human activity recognition using smartphones. Sensors, 21(11), 3845. https://doi.org/10.3390/s21113845
- Rao, R. (2020). Rao algorithms: Three metaphor-less simple algorithms for solving optimization problems. International Journal of Industrial Engineering Computations, 11(1), 107–130. https://doi.org/10.5267/j.ijiec.2019.6.002
- Rather, S. A., & Bala, P. S. (2021). Constriction coefficient-based particle swarm optimization and gravitational search algorithm for multilevel image thresholding. Expert Systems, 38(7), e12717. https://doi.org/10.1111/exsy.12717
- Reiss, A., & Stricker, D. (2012). Introducing a new benchmarked dataset for activity monitoring. In In 2012 16th international symposium on wearable computers (pp. 108–109). IEEE. https://doi.org/10.1109/ISWC.2012.13
10.1109/ISWC.2012.13 Google Scholar
- Ronald, M., Poulose, A., & Han, D. S. (2021). iSPLInception: An inception-Res Net deep learning architecture for human activity recognition. IEEE Access, 9, 68985–69001. https://doi.org/10.1109/ACCESS.2021.3078184
- Schrader, L., Vargas Toro, A., Konietzny, S., Rüping, S., Schäpers, B., Steinböck, M., … Bock, T. (2020). Advanced sensing and human activity recognition in early intervention and rehabilitation of elderly people. Journal of Population Ageing, 13(2), 139–165. https://doi.org/10.1007/s12062-020-09260-z
- Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673–2681. https://doi.org/10.1109/78.650093
- Singh, K., Dhiman, C., Vishwakarma, D. K., Makhija, H., & Walia, G. S. (2022). A sparse coded composite descriptor for human activity recognition. Expert Systems, 39(1), e12805. https://doi.org/10.1111/exsy.12805
- Souto-Rico, M., González-Carrasco, I., López-Cuadrado, J. L., & Ruíz-Mezcua, B. (2020). A new system for automatic analysis and quality adjustment in audiovisual subtitled-based contents by means of genetic algorithms. Expert Systems, 37(6), e12512. https://doi.org/10.1111/exsy.12512
- Teng, Q., Wang, K., Zhang, L., & He, J. (2020). The layer-wise training convolutional neural networks using local loss for sensor-based human activity recognition. IEEE Sensors Journal, 20(13), 7265–7274. https://doi.org/10.1109/JSEN.2020.2978772
- Uddin, M. Z., & Hassan, M. M. (2018). Activity recognition for cognitive assistance using body sensors data and deep convolutional neural network. IEEE Sensors Journal, 19(19), 8413–8419. https://doi.org/10.1109/JSEN.2018.2871203
- Ullah, M., Ullah, H., Khan, S. D., & Cheikh, F. A. (2019). Stacked lstm network for human activity recognition using smartphone data. In In 2019 8th European workshop on visual information processing (EUVIP) (pp. 175–180). IEEE. https://doi.org/10.1109/EUVIP47703.2019.8946180
10.1109/EUVIP47703.2019.8946180 Google Scholar
- Wan, S., Qi, L., Xu, X., Tong, C., & Gu, Z. (2020). Deep learning models for real-time human activity recognition with smartphones. Mobile Networks and Applications, 25(2), 743–755. https://doi.org/10.1007/s11036-019-01445-x
- Wang, K., He, J., & Zhang, L. (2019). Attention-based convolutional neural network for weakly labeled human activities' recognition with wearable sensors. IEEE Sensors Journal, 19(17), 7598–7604. https://doi.org/10.1109/JSEN.2019.2917225
- Wang, L., & Liu, R. (2020). Human activity recognition based on wearable sensor using hierarchical deep LSTM networks. Circuits, Systems, and Signal Processing, 39(2), 837–856. https://doi.org/10.1007/s00034-019-01116-y
- Wang, Z., Wu, D., Chen, J., Ghoneim, A., & Hossain, M. A. (2016). A triaxial accelerometer-based human activity recognition via EEMD-based features and game-theory-based feature selection. IEEE Sensors Journal, 16(9), 3198–3207. https://doi.org/10.1109/JSEN.2016.2519679
- Xia, K., Huang, J., & Wang, H. (2020). LSTM-CNN architecture for human activity recognition. IEEE Access, 8, 56855–56866. https://doi.org/10.1109/ACCESS.2020.2982225
- Xu, C., Chai, D., He, J., Zhang, X., & Duan, S. (2019). InnoHAR: A deep neural network for complex human activity recognition. IEEE Access, 7, 9893–9902. https://doi.org/10.1109/ACCESS.2018.2890675
- Xu, L., Yang, W., Cao, Y., & Li, Q. (2017). Human activity recognition based on random forests. In In 2017 13th international conference on natural computation, fuzzy systems and knowledge discovery (ICNC-FSKD) (pp. 548–553). IEEE. https://doi.org/10.1109/FSKD.2017.8393329
10.1109/FSKD.2017.8393329 Google Scholar
- Zhao, Y., Yang, R., Chevalier, G., Xu, X., & Zhang, Z. (2018). Deep residual bidir-LSTM for human activity recognition using wearable sensors. Mathematical Problems in Engineering, 2018, 1–13. https://doi.org/10.1155/2018/7316954