The biology of normal bone remodelling
Corresponding Author
P. Katsimbri MB, BS
4th Department of Internal Medicine, “Attikon” University Hospital, Athens, Greece
Correspondence
Pelagia Katsimbri, 4th Department of Internal Medicine, “Attikon” University Hospital, Athens, Greece.
Email: [email protected]
Search for more papers by this authorCorresponding Author
P. Katsimbri MB, BS
4th Department of Internal Medicine, “Attikon” University Hospital, Athens, Greece
Correspondence
Pelagia Katsimbri, 4th Department of Internal Medicine, “Attikon” University Hospital, Athens, Greece.
Email: [email protected]
Search for more papers by this authorAbstract
During life, bone undergoes modelling and remodelling in order to grow or change shape. Bone modelling is the process by which bones change shape or size in response to physiologic influences or mechanical forces that are encountered by the skeleton, while bone remodelling takes place so that bone may maintain its strength and mineral homeostasis. During early childhood, both bone modelling (the formation and shaping of bone) and bone remodelling (the replacement or renewal of old bone) occur. The predominant process in childhood is bone modelling, while in adulthood bone remodelling predominates. The exception to this is after a fracture when we see massive increases in bone formation. During childhood and adolescence growth occurs in the bones longitudinally and radially, while in the growth plates it occurs longitudinally, thus promoting growth in size. Cartilage first proliferates in the epiphyseal and metaphyseal areas of long bones before undergoing mineralisation to form new bone.
REFERENCES
- Andersen, T. L., Sondergaard, T. E., Skorzynska, K. E., Dagnaes-Hansen, F., Plesner, T. L., Hauge, E. M., … Delaisse, J. M. (2009). A physical mechanism for coupling bone resorption and formation in adult human bone. The American Journal of Pathology, 174, 239–247.
- Anderson, H. C. (2003). Matrix vesicles and calcification. Current Rheumatology Reports, 5, 222–226.
- Bonewald, L. F. (2007). Osteocytes as dynamic multifunctional cells. Annals of the New York Academy of Sciences, 1116, 281–290.
- Bonewald, L. F., & Johnson, M. L. (2008). Osteocytes, mechanosensing and Wnt signaling. Bone, 42, 606–615.
- Bonewald, L., & Mundy, G. R. (1990). Role of transforming growth factor beta in bone remodeling. Clinical Orthopaedics and Related Research, 2S, 35–40.
- Burger, E. H., Klein-Nuland, J., & Smit, T. H. (2003). Strain-derived canalicular fluid flow regulates osteoclast activity in a remodeling osteon: A proposal. Journal of Biomechanics, 36, 1452–1459.
- Cao, X., & Chen, D. (2005). The BMP signalling and in vivo bone formation. Gene, 357, 1–8.
- Chamoux, E., Couture, J., Bisson, M., Morissette, J., Brown, J. P., & Roux, S. (2009). The p62 P392L mutation linked to Paget's disease induces activation of human osteoclasts. Molecular Endocrinology, 23, 1668–1680.
- Coxon, F. P., & Taylor, A. (2008). Vesicular trafficking in osteoclasts. Seminars in Cell & Developmental Biology, 19, 424–433.
- Coxon, F. P., Thompson, K., & Rogers, M. J. (2006). Recent advances in understanding the mechanism of action of bisphosphonates. Current Opinion in Pharmacology, 6, 307–312.
- Day, T. F., Guo, X., Garrett-Beal, L., & Yang, Y. (2005). Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Developmental Cell, 8, 739–750.
- Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L., & Karsenty, G. (1997). Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell, 89, 747–754.
- Elefteriou, F., Ahn, J. D., Takeda, S., Starbuck, M., Yang, X., Liu, X., … Noda, M., et al. (2005). Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature, 434, 514–520.
- Glass, D. A. 2nd, Bialek, P., Ahn, J. D., Starbuck, M., Patel, M. S., Clevers, H., … Lang, R. A., et al. (2005). Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Developmental Cell, 8, 751–764.
- Guo, J., Liu, M., Yang, D., Bouxsein, M. L., Saito, H., Galvin, R. J., … Baron, R., et al. (2010). Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metabolism, 11, 161–171.
- Hofbauer, L. C., Khosla, S., Dunstan, C. R., Lacey, D. L., Boyle, W. J., & Riggs, B. L. (2000). The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. Journal of Bone and Mineral Research, 15, 2–12.
- Juppner, H., Abou-Samra, A. B., Freeman, M., Kong, X. F., Schipani, E., Richards, J., … Kronenberg, H. M. (1991). A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science, 254, 1024–1026.
- Karsenty, G., Kronenberg, H. M., & Settembre, C. (2009). Genetic control of bone formation. Annual Review of Cell and Developmental, 25, 629–648.
- Kobayashi, S., Takahashi, H. E., Ito, A., Saito, N., Nawata, M., Horiuchi, H., … Takaoka, K. (2003). Trabecular mini modeling in human iliac bone. Bone, 32, 163–169.
- Krum, S. A., Miranda-Carboni, G. A., Hauschka, P. V., Carroll, J. S., Lane, T. F., Freedman, L. P., & Brown, M. (2008). Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. The EMBO Journal, 27, 535–545.
- Lind, M., Deleuran, B., Thestrup-Pedersen, K., et al. (1995). Chemotaxis of human osteoblasts. Effects of osteotropic growth factors. APMIS, 103, 140–146.
- Locklin, R. M., Oreffo, R. O., & Triffitt, J. T. (1999). Effects of TGFbeta and bFGF on the differentiation of human bone marrow stromal fibroblasts. Cell Biology International, 23, 185–194.
- Luxenburg, C., Geblinger, D., Klein, E., Anderson, K., Hanein, D., Geiger, B., & Addadi, L. (2007). The architecture of the adhesive apparatus of cultured osteoclasts: From podosome formation to sealing zone assembly. PLoS ONE, 2, e179.
- Manolagas, S. C., & Parfitt, A. M. (2010). What old means to bone. Trends in Endocrinology & Metabolism, 21, 369–374.
- Martin, T. J., & Sims, N. A. (2005). Osteoclast-derived activity in the coupling of bone formation to resorption. Trends in Molecular Medicine, 11, 76–81.
- Mulari, M., Vääräniemi, J., & Väänänen, H. K. (2003). Intracellular membrane trafficking in bone resorbing osteoclasts. Microscopy Research and Technique, 61, 496–503.
- Nesbitt, S. A., & Horton, M. A. (1997). Trafficking of matrix collagens through bone resorbing osteoclasts. Science, 276, 266–273.
- Parfitt, A. M. (1994). Osteonal and hemiosteonal remodeling: The spatial and temporal framework for signal traffic in adult bone. Journal of Cellular Biochemistry, 55, 273–276.
- Rochefort, G. Y., Pallu, S., & Benhamou, C. L. (2010). Osteocyte: The unrecognised side of bone tissue. Osteoporosis International, 21, 1457–1469.
- Rosen, C. J., Ackert-Bicknell, C., Rodriguez, J. P., & Pino, A. M. (2009). Marrow fat and the bone microenvironment: Developmental, functional, and pathological implications. Critical Reviews in Eukaryotic Gene Expression, 19, 109–124.
- Takada, I., Mihara, M., Suzawa, M., Ohtake, F., Kobayashi, S., Igarashi, M., … Mezaki, Y., et al. (2007). A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-gamma transactivation. Nature Cell Biology, 9, 1273–1285.
- Teitelbaum, S. L. (2007). Osteoclasts: what do they do and how do they do it? The American Journal of Pathology, 170, 427–435.
- Teitelbaum, S. L., Abu-Amer, Y., & Ross, F. P. (1995). Molecular mechanisms of bone resorption. Journal of Cellular Biochemistry, 59, 1–10.
- Teitelbaum, S. L., & Ross, F.P. (2003). Genetic regulation of osteoclast development and function. Nature Reviews Genetics, 4, 638–649.
- Vaananen, H. K., Zhao, H., Mulari, M., & Halleen, J. M. (2000). The cell biology of osteoclast function. Journal of Cell Science, 113, 377–381.
- Verborgt, O., Tatton, N. A., Majeska, R. J., & Schaffler, M. B. (2002). Spatial distribution of Bax and Bcl-2 in osteocytes after bone fatigue: complementary roles in bone remodeling regulation? Journal of Bone and Mineral Research, 17, 907–914.
- Wan, M., Yang, C., Li, J., Wu, X., Yuan, H., Ma, H., … Cao, X. (2008). Parathyroid hormone signaling through low-density lipoprotein related protein 6. Genes & Development, 22, 2968–2979.
- Weitzmann, M. N., & Pacifici, R. (2007). T cells: Unexpected players in the bone loss induced by estrogen deficiency and in basal bone homeostasis. Annals of the New York Academy of Sciences, 1116, 360–375.
- Yamaza, T., Goto, T., Kamiya, T., Kobayashi, Y., Sakai, H., & Tanaka, T. (1998). Study of immunoelectron microscopic localization of cathepsin K in osteoclasts and other bone cells in the mouse femur. Bone, 23, 499–509.
- Yoshida, H., Hayashi, S., Kunisada, T., Ogawa, M., Nishikawa, S., Okamura, H., … Nishikawa, S. (1990). The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature, 345, 442–444.