Renal protection strategies after heart transplantation
Corresponding Author
Daniel Reichart
Department of Cardiovascular Surgery, , University Heart Center Hamburg, Hamburg, Germany
Correspondence
Daniel Reichart, MD, Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany.
Email: [email protected]
Search for more papers by this authorHermann Reichenspurner
Department of Cardiovascular Surgery, , University Heart Center Hamburg, Hamburg, Germany
Search for more papers by this authorMarkus Johannes Barten
Department of Cardiovascular Surgery, , University Heart Center Hamburg, Hamburg, Germany
Search for more papers by this authorCorresponding Author
Daniel Reichart
Department of Cardiovascular Surgery, , University Heart Center Hamburg, Hamburg, Germany
Correspondence
Daniel Reichart, MD, Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany.
Email: [email protected]
Search for more papers by this authorHermann Reichenspurner
Department of Cardiovascular Surgery, , University Heart Center Hamburg, Hamburg, Germany
Search for more papers by this authorMarkus Johannes Barten
Department of Cardiovascular Surgery, , University Heart Center Hamburg, Hamburg, Germany
Search for more papers by this authorAbstract
Renal dysfunction caused by calcineurin inhibitor (CNI) nephrotoxicity occurs often and contributes significantly to late mortality after heart transplantation (HTx). Over the last decades, this has prompted many clinical studies in an effort to develop kidney-protecting immunosuppressive strategies including delayed CNI start, minimization, withdrawal, or even de novo CNI avoidance. In the past, these strategies often failed due to the lack of efficacy. Since 2009, novel CNI-reducing strategies have been under investigation. These strategies minimize renal damage using induction agents such as antithymocyte globulin and alternative immunosuppressive agents such as the mechanistic target of rapamycin inhibitors (sirolimus or everolimus) or mycophenolate. This review outlines the recent results of using these renal protection strategies including their drawbacks. We also discuss alternative approaches to optimize individual immunosuppressive therapies after HTx.
REFERENCES
- 1Lund LH, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: thirty-second official adult heart transplantation report—2015; focus theme: early graft failure. J Heart Lung Transplant. 2015; 34: 1244-1254.
- 2Ojo AO, Held PJ, Port FK, et al. Chronic renal failure after transplantation of a nonrenal organ. N Engl J Med. 2003; 349: 931-940.
- 3Lindelow B, Bergh CH, Herlitz H, et al. Predictors and evolution of renal function during 9 years following heart transplantation. J Am Soc Nephrol. 2000; 11: 951-957.
- 4Thomas HL, Banner NR, Murphy CL, et al. Incidence, determinants, and outcome of chronic kidney disease after adult heart transplantation in the United Kingdom. Transplantation. 2012; 93: 1151-1157.
- 5Arora S, Andreassen A, Simonsen S, et al. Prognostic importance of renal function 1 year after heart transplantation for all-cause and cardiac mortality and development of allograft vasculopathy. Transplantation. 2007; 84: 149-154.
- 6Molina EJ, Sandusky MF, Gupta D, et al. Outcomes after heart transplantation in patients with and without pretransplant renal dysfunction. Scand Cardiovasc J. 2010; 44: 168-176.
- 7Fortrie G, Manintveld OC, Constantinescu AA, et al. Renal function at one year after cardiac transplantation rather than acute kidney injury is highly associated with long-term patient survival and loss of renal function. Transpl Int. 2017; 30: 788-798.
- 8Gude E, Andreassen AK, Arora S, et al. Acute renal failure early after heart transplantation: risk factors and clinical consequences. Clin Transplant. 2010; 24: E207-E213.
- 9De Santo LS, Romano G, Amarelli C, et al. Implications of acute kidney injury after heart transplantation: what a surgeon should know. Eur J Cardiothorac Surg. 2011; 40: 1355-1361.
- 10Fortrie G, Manintveld OC, Caliskan K, et al. Acute kidney injury as a complication of cardiac transplantation: incidence, risk factors, and impact on 1-year mortality and renal function. Transplantation. 2015; 100: 1740-1749.
- 11Chawla LS, Eggers PW, Star RA, et al. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med. 2014; 371: 58-66.
- 12Gonwa TA, Jennings L, Mai ML, et al. Estimation of glomerular filtration rates before and after orthotopic liver transplantation: evaluation of current equations. Liver Transpl. 2004; 10: 301-309.
- 13Rossi AP, Vella JP. Acute kidney disease after liver and heart transplantation. Transplantation. 2016; 100: 506-514.
- 14Tariq S, Aronow W. Use of inotropic agents in treatment of systolic heart failure. Int J Mol Sci. 2015; 16: 29060-29068.
- 15Bloom RD, Reese PP. Chronic kidney disease after nonrenal solid-organ transplantation. J Am Soc Nephrol. 2007; 18: 3031-3041.
- 16Issa N, Kukla A, Ibrahim HN. Calcineurin inhibitor nephrotoxicity: a review and perspective of the evidence. Am J Nephrol. 2013; 37: 602-612.
- 17Zuckermann AO, Aliabadi AZ. Calcineurin-inhibitor minimization protocols in heart transplantation. Transpl Int. 2009; 22: 78-89.
- 18Gustafsson F, Ross HJ. Renal-sparing strategies in cardiac transplantation. Curr Opin Organ Transplant. 2009; 14: 566-570.
- 19Keogh A. Calcineurin inhibitors in heart transplantation. J Heart Lung Transplant. 2004; 23: S202-S206.
- 20Eisen H, Ross H. Optimizing the immunosuppressive regimen in heart transplantation. J Heart Lung Transplant. 2004; 23: S207-S213.
- 21Lund LH, Edwards LB, Dipchand AI, et al. ISHLT heart transplantation adult recipients 2016. J Heart Lung Transplant. 2016; 35: 1149-1205.
- 22Constanzo MR, Dipchand A, Starling R, et al. The ISHLT guidelines for the care of heart transplant recipients (guidelines). J Heart Lung Transplant. 2010; 29: 914-956.
- 23Cantarovich M, Giannetti N, Barkun J, et al. Antithymocyte globulin induction allows a prolonged delay in the initiation of cyclosporine in heart transplant patients with postoperative renal dysfunction. Transplantation. 2004; 78: 779-781.
- 24Aliabadi AZ, Goekler J, Salameh O, et al. Calcineurin inhibitor (CNI) delay with ATG induction: teaching an old dog, new tricks. J Heart Lung Transplant. 2016; 35: S17.
- 25Zuckermann A, Schulz U, Deuse T, et al. Thymoglobulin induction in heart transplantation: patient selection and implications for maintenance immunosuppression. Transpl Int. 2015; 28: 259-269.
- 26Barten MJ, Schulz U, Beiras-Fernandez A, et al. A proposal for early dosing regimens in heart transplant patients receiving thymoglobulin and calcineurin inhibition. Transplant Direct. 2016; 2: e81.
10.1097/TXD.0000000000000594 Google Scholar
- 27Rosenberg PB, Vriesendorp AE, Drazner MH, et al. Induction therapy with basiliximab allows delayed initiation of cyclosporine and preserves renal function after cardiac transplantation. J Heart Lung Transplant. 2005; 24: 1327-1331.
- 28Delgado DH, Miriuka SG, Cusimano RJ, et al. Use of basiliximab and cyclosporine in heart transplant patients with pre-operative renal dysfunction. J Heart Lung Transplant. 2005; 24: 166-169.
- 29Teuteberg JJ, Shullo MA, Zomak R, et al. Alemtuzumab induction prior to cardiac transplantation with lower intensity maintenance immunosuppression: one-year outcomes. Am J Transplant. 2010; 10: 382-388.
- 30Cahoon WD, Ensor CR, Shullo MA. Alemtuzumab for cytolytic induction of immunosuppression in heart transplant recipients. Prog Transplant. 2012; 22: 344-349.
- 31Hunt J, Bedanova H, Starling RC, et al. Premature termination of a prospective, open label, randomized, multicenter study of sirolimus to replace calcineurin inhibitors (CNI) in a standard care regimen of CNI, MMF and corticosteroids early after heart transplantation. J Heart Lung Transplant. 2007; 26: S203.
- 32Meiser B, Buchholz S, Kaczmarek I. De-novo calcineurin-inhibitor-free immunosuppression with sirolimus and mycophenolate mofetil after heart transplantation: 5-year results. Curr Opin Organ Transplant. 2011; 16: 522-528.
10.1097/MOT.0b013e32834aa2e1 Google Scholar
- 33Kaczmarek I, Zaruba MM, Beiras-Fernandez A, et al. Tacrolimus with mycophenolate mofetil or sirolimus compared with calcineurin inhibitor-free immunosuppression (sirolimus/mycophenolate mofetil) after heart transplantation: 5-year results. J Heart Lung Transplant. 2013; 32: 277-284.
- 34Mudge G Jr. Sirolimus and cardiac transplantation: is it the “magic bullet”? Circulation. 2007; 116: 2666-2668.
10.1161/CIRCULATIONAHA.107.737965 Google Scholar
- 35Lehmkuhl HB, Arizon J, Vigano M, et al. Everolimus with reduced cyclosporine versus MMF with standard cyclosporine in de novo heart transplant recipients. Transplantation. 2009; 88: 115-122.
- 36Potena L, Bianchi IG, Magnani G, et al. Cyclosporine lowering with everolimus or mycophenolate to preserve renal function in heart recipients: a randomized study. Transplantation. 2010; 89: 263-265.
- 37Potena L, Prestinenzi P, Bianchi IG, et al. Cyclosporine lowering with everolimus versus mycophenolate mofetil in heart transplant recipients: long-term follow-up of the SHIRAKISS randomized, prospective study. J Heart Lung Transplant. 2012; 31: 565-570.
- 38Vollenbröker B, George B, Wolfgart M, et al. mTOR regulates expression of slit diaphragm proteins and cytoskeleton structure in podocytes. Am J Physiol Renal Physiol. 2009; 296: F418-F426.
- 39Stephany BR, Boumitri M, Budev M, et al. Absence of proteinuria predicts improvement in renal function after conversion to sirolimus-based immunosuppressive regimens in lung transplant survivors with chronic kidney disease. J Heart Lung Transplant. 2009; 28: 564-571.
10.1016/j.healun.2009.03.010 Google Scholar
- 40Aliabadi AZ, Pohanka E, Seebacher G, et al. Development of proteinuria after switch to sirolimus-based immunosuppression in long-term cardiac transplant patients. Am J Transplant. 2008; 8: 854-861.
- 41Raichlin E, Khalpey Z, Kremers W, et al. Replacement of calcineurin-inhibitors with sirolimus as primary immunosuppression in stable cardiac transplant recipients. Transplantation. 2007; 84: 467-474.
- 42Fine NM, Kushwaha SS. Recent advances in mammalian target of rapamycin inhibitor use in heart and lung transplantation. Transplantation. 2016; 100: 2558-2568.
- 43Anglicheau D, Pallet N, Rabant M, et al. Role of P-glycoprotein in cyclosporine cytotoxicity in the cyclosporine-sirolimus interaction. Kidney Int. 2006; 70: 1019-1025.
- 44Serkova N, Litt L, James TL, et al. Evaluation of individual and combined neurotoxicity of the immunosuppressants cyclosporine and sirolimus by in vitro multinuclear NMR spectroscopy. J Pharmacol Exp Ther. 1999; 289: 800-806.
- 45Eisen HJ, Kobashigawa J, Starling RC, et al. Everolimus versus mycophenolate mofetil in heart transplantation: a randomized, multicenter trial. Am J Transplant. 2013; 13: 1203-1216.
- 46Guethoff S, Stroeh K, Grinninger C, et al. De novo sirolimus with low-dose tacrolimus versus full-dose tacrolimus with mycophenolate mofetil after heart transplantation–8-year results. J Heart Lung Transplant. 2015; 34: 634-642.
- 47Gullestad L, Iversen M, Mortensen SA, et al. Everolimus with reduced calcineurin inhibitor in thoracic transplant recipients with renal dysfunction: a multicenter, randomized trial. Transplantation. 2010; 89: 864-872.
- 48Gullestadt L, Mortensen SA, Eiskjaer H, et al. Two-year outcome in thoracic transplant recipients after conversion to everolimus with reduced calcineurin inhibitor within a multicenter, open-label, randomized trial. Transplantation. 2010; 90: 1581-1589.
- 49Arora S, Gude E, Sigurdardottir V, et al. Improvement in renal function after everolimus introduction and calcineurin inhibitor reduction in maintenance thoracic transplant recipients: the significance of baseline glomerular filtration rate. J Heart Lung Transplant. 2012; 31: 259-265.
- 50Gullestad L, Eiskjaer H, Gustafsson F, et al. Long-term outcomes of thoracic transplant recipients following conversion to everolimus with reduced calcineurin inhibitor in a multicenter, open-label, randomized trial. Transpl Int. 2016; 29: 819-829.
- 51Cornu C, Dufays C, Gaillard S, et al. Impact of the reduction of calcineurin inhibitors on renal function in heart transplant patients: a systematic review and meta-analysis. Br J Clin Pharmacol. 2014; 78: 24-32.
- 52Fuchs U, Zittermann A, Ensminger SM, Schulz U, Gummert JF. Clinical outcome in heart transplant recipients receiving everolimus in combination with dosage reduction of the calcineurin inhibitor cyclosporine A or tacrolimus. Transpl Immunol. 2014; 31: 87-91.
- 53Andreassen AK, Andersson B, Gustafsson F, et al. Everolimus initiation and early calcineurin inhibitor withdrawal in heart transplant recipients: a randomized trial. Am J Transplant. 2014; 14: 1828-1838.
- 54Andreassen AK, Andersson B, Gustafsson F, et al. Everolimus initiation with early calcineurin inhibitor withdrawal in de novo heart transplant recipients: three-year results from the randomized SCHEDULE study. Am J Transplant. 2016; 16: 1238-1247.
- 55Deuse T, Bara C, Barten MJ, et al. The Mandela study: a multicenter, randomized, open-label, parallel group trial to refine the use of everolimus after heart transplantation. Contemp Clin Trials. 2015; 45: 356-363.
- 56Zuckermann A, Keogh A, Crespo-Leiro MG, et al. Randomized controlled trial of sirolimus conversion in cardiac transplant recipients with renal insufficiency. Am J Transplant. 2012; 12: 2487-2497.
- 57Zuckermann A, Eisen H, See Tai S, et al. Sirolimus conversion after heart transplant: risk factors for acute rejection and predictors of renal function response. Am J Transplant. 2014; 14: 2048-2054.
- 58Kushwaha SS. mTOR inhibitors as primary immunosuppression after heart transplant: confounding factors in clinical trials. Am J Transplant. 2014; 14: 1958-1959.
- 59Gonzalez-Vilchez F, Vazquez de Prada JA, Paniagua MJ, et al. Use of mTOR inhibitors in chronic heart transplant recipients with renal failure: calcineurin-inhibitors conversion or minimization? Int J Cardiol. 2014; 171: 15-23.
- 60Gude E, Gullestad L, Arora S, et al. Benefit of early conversion from CNI-based to everolimus-based immunosuppression in heart transplantation. J Heart Lung Transplant. 2010; 29: 641-647.
- 61Jenkins GH, Singer DR. Hypertension in thoracic transplant recipients. J Hum Hypertens. 1998; 12: 813-823.
- 62Marco J, Calle C, Román D, et al. Hyperglucagonism induced by glucocorticoid treatment in man. N Engl J Med. 1973; 288: 128-131.
- 63Ballantyne CM, Radovancevic B, Farmer JA, et al. Hyperlipidemia after heart transplantation: report of a 6-year experience, with treatment recommendations. J Am Coll Cardiol. 1992; 19: 1315-1321.
- 64Livi U, Luciani GB, Boffa GM, et al. Clinical results of steroid-free induction immunosuppression after heart transplantation. Ann Thorac Surg. 1993; 55: 1160-1165.
- 65Yamani MH, Taylor DO, Czerr J, et al. Thymoglobulin induction and steroid avoidance in cardiac transplantation: results of a prospective, randomized, controlled study. Clin Transplant. 2008; 22: 76-81.
- 66Crespo-Leiro M, Delgado J, Almenar L, et al. Steroid use in heart transplant patients in Spain in the current era: a multicenter survey. Transplant Proc. 2009; 41: 2244-2246.
- 67Castel MA, Vallejos I, Ramos P, et al. Outcome after steroid withdrawal in heart transplantation. Transplant Proc. 2009; 41: 2253-2255.
- 68Faulhaber M, Mäding I, Malehsa D, et al. Steroid withdrawal and reduction of cyclosporine A under mycophenolate mofetil after heart transplantation. Int Immunopharmacol. 2013; 15: 712-717.
- 69Baraldo M, Gregoraci G, Livi U. Steroid-free and steroid withdrawal protocols in heart transplantation: the review of literature. Transpl Int. 2014; 27: 515-529.
- 70Costanzo-Nordin MR, Hubbell EA, O'Sullivan EJ, et al. Successful treatment of heart transplant rejection with photopheresis. Transplantation. 1992; 53: 808-815.
- 71Barr ML, Meiser BM, Eisen HJ, et al. Photopheresis for the prevention of rejection in cardiac transplantation. Photopheresis transplantation study group. N Engl J Med. 1998; 339: 1744-1751.
- 72Carlo WF, Pearce FB, George JF, et al. Single-center experience with extracorporeal photopheresis in pediatric heart transplantation. J Heart Lung Transplant. 2014; 33: 624-628.
- 73Patel J, Klapper E, Shafi H, et al. Extracorporeal photopheresis in heart transplant rejection. Transfus Apher Sci. 2015; 52: 167-170.
- 74Kittleson MM, Kobashigawa JA. Antibody-mediated rejection. Curr Opin Organ Transplant. 2012; 17: 551-557.
- 75Barten MJ, Dieterlen MT. Extracorporeal photopheresis after heart transplantation. Immunotherapy. 2014; 6: 927-944.
- 76Larsen CP, Pearson TC, Adams AB, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant. 2005; 5: 443-453.
- 77Wojciechowski D, Vincenti F. Current status of costimulatory blockade in renal transplantation. Curr Opin Nephrol Hypertens. 2016; 25: 583-590.
- 78Vincenti F, Charpentier B, Vanrenterghem Y, et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am J Transplant. 2010; 10: 535-546.
- 79Van Gelder T, Hesselink DA. Belatacept: a game changer? Transplantation. 2016; 100: 1390-1392.
10.1097/TP.0000000000001268 Google Scholar
- 80Vincenti F, Rostaing L, Grinyo J, et al. Belatacept and long-term outcomes in kidney transplantation. N Engl J Med. 2016; 374: 333-343.
- 81Mohiuddin MM, Singh AK, Corcoran PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun. 2016; 7: 11138.
- 82Grupper A, Grupper A, Daly RC, et al. Kidney transplantation as a therapeutic option for end-stage renal disease developing after heart transplantation. J Heart Lung Transplant. 2017; 36: 297-304.
- 83Srinivas TR, Stephany BR, Budev M, et al. An emerging population: kidney transplant candidates who are placed on the waiting list after liver, heart, and lung transplantation. Clin J Am Soc Nephrol. 2010; 5: 1881-1886.
- 84Perrault LP, Carrier M. Kidney transplantation as a therapeutic option for end-stage renal disease long after heart transplantation: should we all do it? J Heart Lung Transplant. 2017; 36: 378-379.
10.1016/j.healun.2017.01.009 Google Scholar
- 85Ronco M, Haapio M, House A, et al. Cardiorenal syndrome. J Am Coll Cardiol. 2008; 52: 1527-1539.
- 86Kobashigawa J, Zuckermann A, Macdonald P, et al. Report from a consensus conference on primary graft dysfunction after cardiac transplantation. J Heart Lung Transplant. 2014; 33: 327-340.
- 87Joseph A, Pilichowska M, Boucher H, et al. BK virus nephropathy in heart transplant recipients. Am J Kidney Dis. 2015; 65: 949-955.