Physico-chemical characterisation and light stability of dyes and pigments found in cultural heritage objects: Insights from microfading testing for assessing light fastness
Corresponding Author
Julio M. del Hoyo-Meléndez
Laboratory of Analysis and Non-Destructive Investigation of Heritage Objects (LANBOZ), National Museum in Krakow, Krakow, Poland
Correspondence
Julio M. del Hoyo-Meléndez, Laboratory of Analysis and Non-Destructive Investigation of Heritage Objects, National Museum in Krakow, 31-109 Krakow, Poland.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Julio M. del Hoyo-Meléndez
Laboratory of Analysis and Non-Destructive Investigation of Heritage Objects (LANBOZ), National Museum in Krakow, Krakow, Poland
Correspondence
Julio M. del Hoyo-Meléndez, Laboratory of Analysis and Non-Destructive Investigation of Heritage Objects, National Museum in Krakow, 31-109 Krakow, Poland.
Email: [email protected]
Search for more papers by this author[Correction added on 16 October, after first online publication: Section 7 heading has been updated in this version.]
Abstract
Understanding the chemistry of dyes and pigments found in cultural heritage objects and their permanence is central for their preservation. Heritage science research has generally focused on either identification of materials present on actual objects or accelerated and natural ageing of mock-up samples prepared using historically accurate methods to simulate the materiality of cultural heritage objects. A more recent strategy is the integration of these two research areas, which provides a holistic approach to assess both the chemical composition and stability of materials. Over the last 30 years, microfading testing (MFT) has notably contributed to understanding materials' responsiveness to light, minimising damage to objects from museum lighting and revealing insights into molecular structures of dyes and pigments, when employed in conjunction with other techniques. By combining MFT with diverse analytical methods, including imaging, spectroscopy, microscopy and chromatography, a more comprehensive approach is achieved. This joined-up strategy contributes to improved decision-making processes in the conservation and preservation of cultural heritage objects.
REFERENCES
- 1Purinton N, Watters M. A study of the materials used by medieval Persian painters. J Am Inst Conserv. 1991; 30(2): 125-144. doi:10.1179/019713691806066728
10.1179/019713691806066728 Google Scholar
- 2James EE. Technical study of Ethiopian icons, National Museum of African art, Smithsonian Institution. J Am Inst Conserv. 2005; 44(1): 39-50. doi:10.1179/019713605806082419
- 3Ferreira ESB, Hulme AN, McNab H, Quye A. The natural constituents of historical textile dyes. Chem Soc Rev. 2004; 33(6): 329-336. doi:10.1039/b305697j
- 4Alegbe EO, Uthman TO. A review of history, properties, classification, applications and challenges of natural and synthetic dyes. Heliyon. 2024; 10(13):e33646. doi:10.1016/j.heliyon.2024.e33646
- 5Maynez-Rojas MA, Casanova-González E, Ruvalcaba-Sil JL. Identification of natural red and purple dyes on textiles by fiber-optics reflectance spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2017; 178: 239-250. doi:10.1016/j.saa.2017.02.019
- 6López-Montalvo E, Villaverde V, Roldán C, Murcia S, Badal E. An approximation to the study of black pigments in Cova Remigia (Castellón, Spain). Technical and cultural assessments of the use of carbon-based black pigments in Spanish Levantine rock art. J Archaeol Sci. 2014; 52: 535-545. doi:10.1016/j.jas.2014.09.01
- 7López-Montalvo E, Roldán C, Badal E, Murcia-Mascarós S, Villaverde V. Identification of plant cells in black pigments of prehistoric Spanish Levantine rock art by means of a multi-analytical approach. A new method for social identity materialization using chaõÃne opeÂratoire. PLoS One. 2017; 12(2):e0172225. doi:10.1371/journal.pone.0172225
- 8del Hoyo-Meléndez JM, Carrión-Ruiz B, Riutort-Mayol G, Lerma JL. Lightfastness assessment of Levantine rock art by means of microfading spectrometry. Color Res Appl. 2019; 44(4):547-555. doi:10.1002/col.2237
10.1002/col.2237 Google Scholar
- 9Huntley J, Aubert M, Oktaviana AA, et al. The effects of climate change on the Pleistocene rock art of Sulawesi. Sci Rep. 2021; 11(1): 9833. doi:10.1038/s41598-021-87923-3
- 10Hall K, Meiklejohn I, Sumner P, Arocena J. Light penetration into Clarens sandstone and implications for deterioration of San rock art. Geoarchaeology. 2010; 25(1): 122-136. doi:10.1002/gea.2029
- 11Aceto M. Pigments—the palette of organic colourants in wall paintings. Archaeol Anthropol Sci. 2021; 13(10):159. doi:10.1007/s12520-021-01392-3
10.1007/s12520-021-01392-3 Google Scholar
- 12Degani L, Gulmini M, Piccablotto G, et al. Stability of natural dyes under light emitting diode lamps. J Cult Herit. 2017; 26: 12-21. doi:10.1016/j.culher.2017.02.002
- 13Bradley S. Preventive conservation research and practice at the British Museum. J Am Inst Conserv. 2005; 44(3): 159-173. doi:10.1179/019713605806082248
10.1179/019713605806082248 Google Scholar
- 14Raphael TJ. Preventive conservation and the exhibition process: development of exhibit guidelines and standards for conservation. J Am Inst Conserv. 2005; 44(3): 245-257. doi:10.1179/019713605806082266
10.1179/019713605806082266 Google Scholar
- 15Vitorino T, Picollo M, del Hoyo-Meléndez JM. An investigation of the photostability of 19th century artists' cochineal lake pigments using MFT and conventional accelerated ageing tests. Nondestruct Test Eval. 2024; 1-19. doi:10.1080/10589759.2024.2304261
10.1080/10589759.2024.2304261 Google Scholar
- 16Erhardt D, Mecklenburg MF. Accelerated vs natural aging: effect of aging conditions on the aging process of cellulose. MRS Online Proc Lib. 1995; 352: 247-270. doi:10.1557/PROC-352-247
- 17Pozzi F, Leona M. Surface-enhanced Raman spectroscopy in art and archaeology. J Raman Spectrosc. 2016; 47(1): 67-77. doi:10.1002/jrs.4827
- 18Vermeulen M, Tamburini D, McGeachy AC, Meyers RD, Walton MS. Multiscale characterization of shellfish purple and other organic colorants in 20th-century traditional enredos from Oaxaca, Mexico. Dyes Pigments. 2022; 206:110663. doi:10.1016/j.dyepig.2022.110663
- 19Shahid M, Wertz J, Degano I, Aceto M, Khan MI, Quye A. Analytical methods for determination of anthraquinone dyes in historical textiles: a review. Anal Chim Acta. 2019; 1083: 58-87. doi:10.1016/j.aca.2019.07.009
- 20Dang R, Tan H, Wang N, Liu G, Zhang F, Song X. Raman spectroscopy-based method for evaluating LED illumination-induced damage to pigments in high-light-sensitivity art. Appl Optics. 2020; 59: 4599-4605. doi:10.1364/AO.379398
- 21Ford B, Batterham I. Accelerated light-fading of some historic office copy documents. The 8th AICCM Book, Paper and Photographic Materials Symposium. Australian Institute for the Conservation of Cultural Material; 2014: 14-20.
- 22Lerwill A, Townsend JH, Liang H, Thomas J, Hackney S. A portable micro-fading spectrometer for versatile lightfastness testing. E-Pres Sci. 2008; 5: 17-28.
- 23Whitmore PM, Pan X, Bailie C. Predicting the fading of objects: identification of fugitive colorants through direct nondestructive lightfastness measurements. J Am Inst Conserv. 1999; 38(3): 395-409. doi:10.1179/019713699806113420
10.1179/019713699806113420 Google Scholar
- 24Ford B, Smith N. Lighting guidelines and the lightfastness of Australian indigenous objects at the National Museum of Australia. In: ICOM Committee for Conservation 16th Triennial Meeting Lisbon Portugal, 19–23 September 2011. International Council of Museums; 2011.
- 25del Hoyo-Meléndez JM, Świt P, Sobczyk J. Measuring photostability through glass: the application of microfading testing to the study of framed pastel artworks. Color Technol. 2018; 134(6): 411-422. doi:10.1111/cote.12365
10.1111/cote.12365 Google Scholar
- 26Abel A. The history of dyes and pigments. Colour Design. Elsevier; 2012: 557-587. doi:10.1016/b978-0-08-101270-3.00024-2
10.1016/B978-0-08-101270-3.00024-2 Google Scholar
- 27Woodhead AL, Cosgrove B, Church JS. The purple coloration of four late 19th century silk dresses: a spectroscopic investigation. Spectrochim Acta A Mol Biomol Spectrosc. 2016; 154: 185-192. doi:10.1016/j.saa.2015.10.024
- 28Stenger J, Kwan EE, Eremin K, et al. Lithol red salts: characterization and deterioration. E-Pres Sci. 2010; 7: 147-157.
- 29Zhao S, Jin X, Shen L, et al. Non-invasive study of the dyes and pigments in the Chinese woodblock new year paintings. J Archaeol Sci Rep. 2023; 49:104061. doi:10.1016/j.jasrep.2023.10406
10.1016/j.jasrep.2023.10406 Google Scholar
- 30Angelin EM, Oliveira MC, Nevin A, Picollo M, Melo MJ. To be or not to be an azo pigment: chemistry for the preservation of historical β-naphthol reds in cultural heritage. Dyes Pigments. 2021; 190:109244. doi:10.1016/j.dyepig.2021.109244
- 31Melo MJ, Nabais P, Vieira M, et al. Between past and future: advanced studies of ancient colours to safeguard cultural heritage and new sustainable applications. Dyes Pigments. 2022; 208:110815. doi:10.1016/j.dyepig.2022.110815
- 32Tomasini E, Costantini I, Careaga V, et al. Identification of pigments and binders of a 17th century mural painting (Bolivia). New report on pigments associated with andean minerals. J Cult Herit. 2023; 62: 206-216. doi:10.1016/j.culher.2023.05.030
10.1016/j.culher.2023.05.030 Google Scholar
- 33Cotte M, Genty-Vincent A, Janssens K, Susini J. Applications of synchrotron X-ray nano-probes in the field of cultural heritage. C R Phys. 2018; 19(7): 575-588. doi:10.1016/j.crhy.2018.07.002
- 34Oriols N, Salvadó N, Pradell T, Jiménez N, Juanhuix J, Butí S. The three-tone system in Sant Climent de Taüll wall paintings: an imprint of medieval treatises. J Cult Herit. 2023; 62: 114-123. doi:10.1016/j.culher.2023.05.021
10.1016/j.culher.2023.05.021 Google Scholar
- 35Doménech-Carbó A, Doménech-Carbó MT, Valle-Algarra FM, Gimeno-Adelantado JV, Osete-Cortina L, Bosch-Reig F. On-line database of voltammetric data of immobilized particles for identifying pigments and minerals in archaeometry, conservation and restoration (ELCHER database). Anal Chim Acta. 2016; 927: 1-12. doi:10.1016/j.aca.2016.04.052
- 36Romani M, Capobianco G, Pronti L, et al. Analytical chemistry approach in cultural heritage: the case of Vincenzo Pasqualoni's wall paintings in S. Nicola in Carcere (Rome). Microchem J. 2020; 156:104920. doi:10.1016/j.microc.2020.104920
- 37Tamburini D, Dyer J. Fibre optic reflectance spectroscopy and multispectral imaging for the non-invasive investigation of Asian colourants in Chinese textiles from Dunhuang (7th-10th century AD). Dyes Pigments. 2019; 162: 494-511. doi:10.1016/j.dyepig.2018.10.054
- 38Neugebauer W, Sessa C, Steuer C, Allscher T, Stege H. Naphthol green – a forgotten artists' pigment of the early 20th century. History, chemistry and analytical identification. J Cult Herit. 2019; 36: 153-165. doi:10.1016/j.culher.2018.08.008
- 39Pérez-Arantegui J, Rupérez D, Almazán D, Díez-de-Pinos N. Colours and pigments in late ukiyo-e art works: a preliminary non-invasive study of Japanese woodblock prints to interpret hyperspectral images using in-situ point-by-point diffuse reflectance spectroscopy. Microchem J. 2018; 139: 94-109. doi:10.1016/j.microc.2018.02.015
- 40Occhipinti M, Alberti R, Parsani T, et al. IRIS: a novel integrated instrument for co-registered MA-XRF mapping and VNIR-SWIR hyperspectral imaging. X-Ray Spectrom. 2023;1. doi:10.1002/xrs.3405
10.1002/xrs.3405 Google Scholar
- 41Vahur S, Treshchalov A, Lohmus R, et al. Laser-based analytical techniques in cultural heritage science – tutorial review. Anal Chim Acta. 2024; 1292:342107. doi:10.1016/j.aca.2023.342107
- 42Syvilay D, Bai XS, Wilkie-Chancellier N, et al. Laser-induced emission, fluorescence and Raman hybrid setup: a versatile instrument to analyze materials from cultural heritage. Spectrochim Acta Part B At Spectrosc. 2018; 140: 44-53. doi:10.1016/j.sab.2017.12.006
- 43Siozos P, Philippidis A, Anglos D. Portable laser-induced breakdown spectroscopy/diffuse reflectance hybrid spectrometer for analysis of inorganic pigments. Spectrochim Acta Part B At Spectrosc. 2017; 137: 93-100. doi:10.1016/j.sab.2017.09.005
- 44Smith GD, Esson JM, Chen VJ, Hanson RM. Forensic dye analysis in cultural heritage: unraveling the authenticity of the earliest Persian knotted-pile silk carpet. Forensic Sci Int. 2021; 3:100130. doi:10.1016/j.fsisyn.2020.11.004
- 45Cavaleri T, Buscaglia P, Migliorini S, et al. Pictorial materials database: 1200 combinations of pigments, dyes, binders and varnishes designed as a tool for heritage science and conservation. Appl Phys A. 2017; 123: 419. doi:10.1007/s00339-017-1031-1
- 46Patin G. Improved Microfading Device for Risk Assessment of Colour Change in Van Gogh's Works. Doctoral thesis. University of Amsterdam 2024.
- 47Vermeulen M, Janssens K, Sanyova J, Rahemi V, McGlinchey C, De Wael K. Assessing the stability of arsenic sulfide pigments and influence of the binding media on their degradation by means of spectroscopic and electrochemical techniques. Microchem J. 2018; 138: 82-91. doi:10.1016/j.microc.2018.01.004
- 48del Hoyo-Meléndez JM, Mecklenburg MF, Doménech-Carbó MT. An evaluation of daylight distribution as an initial preventive conservation measure at two Smithsonian Institution museums, Washington DC, USA. J Cult Herit. 2011; 12(1): 54-64. doi:10.1016/j.culher.2010.05.003
- 49Ferreira C, De Freitas VP, Ramos NMM. Influence of hygroscopic materials in the stabilization of relative humidity inside museum display cases. Energy Procedia. Vol 78. Elsevier Ltd; 2015: 1275-1280. doi:10.1016/j.egypro.2015.11.291
10.1016/j.egypro.2015.11.291 Google Scholar
- 50Sciurpi F, Carletti C, Cellai G, Piselli C. Indoor air quality in the Uffizi gallery of Florence: sampling, assessment and improvement strategies. Appl Sci. 2022; 12(17):8642. doi:10.3390/app12178642
- 51Lombardo L, Parvis M, Corbellini S, Arroyave Posada CE, Angelini E, Grassini S. Environmental monitoring in the cultural heritage field⋆. Eur Phys J Plus. 2019; 134(8):411. doi:10.1140/epjp/i2019-12800-2
10.1140/epjp/i2019-12800-2 Google Scholar
- 52Gardner M, Rogge CE. Beauty revealed: technical analysis and treatment of Zand and Qajar oil paintings. J Am Inst Conserv. 2023; 62(4): 264-284. doi:10.1080/01971360.2022.2138245
10.1080/01971360.2022.2138245 Google Scholar
- 53Karadag R, Torgan E. Analyses of dye, weaving and metal thread in Ottoman silk brocades and their reproduction. In: Textile Society of America Symposium Proceedings. Textile Society of America; 2012:703.
- 54Feller RL. Control of deteriorating effects of light upon museum objects*. Mus Int. 1964; 17(2): 57-98. doi:10.1111/j.1468-0033.1964.tb01570.x
- 55Thomson G. The Museum Environment. Butterworths; 1986.
- 56Cuttle C. Light for Art's Sake. Routledge; 2007.
10.4324/9780080496115 Google Scholar
- 57Saunders D. Museum Lighting: A Guide for Conservators and Curators. The Getty Conservation Institute; 2020. doi:10.2307/jj.4908204
10.2307/jj.4908204 Google Scholar
- 58Ford B. A microfading survey of the lightfastness of blue, black and red ballpoint pen inks in ambient and modified environments. AICCM Bull. 2018; 39(1): 26-34. doi:10.1080/10344233.2018.1515809
10.1080/10344233.2018.1515809 Google Scholar
- 59Ahmed HE, El-Ebissy AA. Influence of public museum conditions on polymer degradation and color change of historical dyed wool textiles. J Meas Sci Appl. 2021; 1(1): 74-87.
- 60Fenech A, Strlič M, Degano I, Cassar M. Stability of chromogenic colour prints in polluted indoor environments. Polym Degrad Stab. 2010; 95(12): 2481-2485. doi:10.1016/j.polymdegradstab.2010.08.009
- 61Lerwill A, Townsend JH, Liang H, Hackney S, Thomas J. A versatile microfadometer for lightfastness testing and pigment identification. O3A: Optics for Arts, Architecture, and Archaeology. Vol 6618. SPIE; 2007: 66181G. doi:10.1117/12.726029
10.1117/12.726029 Google Scholar
- 62Łojewski T, Thomas J, Gołaąb R, Kawałko J, Łojewska J. Light ageing with simultaneous colorimetry via fibre optics reflection spectrometry. Rev Sci Instrum. 2011; 82(7): 76102. doi:10.1063/1.3606645
- 63Pesme C, Lerwill A, Beltran V, Druzik J. Development of contact portable microfade tester to assess light sensitivity of collection items. J Am Inst Conserv. 2016; 55(2): 117-137. doi:10.1080/01971360.2016.1154430
- 64Patin G, Erdmann RG, Ligterink F, Neevel JG, Van Den Berg J, Hendriks E. An enhanced optical micro-fading device. J Cult Herit. 2022; 57: 276-285. doi:10.5281/zen
10.1016/j.culher.2022.08.012 Google Scholar
- 65Columbia MR, Smith GD, Hoevel C, Messier P. The application of microfadeometric testing to mounted photographs at the Indianapolis Museum of art. Microsc Microanal. 2013; 19(S2): 1412-1413. doi:10.1017/s1431927613009057
10.1017/S1431927613009057 Google Scholar
- 66Chan E, Aambø M, Łojewski T, Grimstad I, Ufnalewska-Godzimirska M, Sandu ICA. Microfade lightfastness testing on the scream versions in the Munch Museum collection. Int J Conserv Sci. 2022; 13(1): 1623-1634.
- 67Pullano M, Mårtensson M. Microfading of watercolours by Carl Larsson from the Gothenburg Museum of art, Sweden. Stud Conserv. 2018; 63(sup 1): 411-413. doi:10.1080/00393630.2018.1497339
10.1080/00393630.2018.1497339 Google Scholar
- 68del Hoyo-Meléndez JM, Mecklenburg MF. A survey on the light-fastness properties of organic-based Alaska native artifacts. J Cult Herit. 2010; 11(4): 493-499. doi:10.1016/j.culher.2010.01.004
- 69Ford B, Smith N. A reality check for microfade testing: five examples. ICOM Committee for Conservation 18th Triennial Meeting Copenhagen Denmark 4–8. International Council of Museums; 2017.
- 70Freeman S, Druzik J, Harnly M, Pesme C. Monitoring photographic materials with a microfade tester. ICOM Committee for Conservation 17th Triennial Meeting Melbourne Australia. International Council of Museums; 2014.
- 71Haddad A, Neufeld L, Martins A. Realizing sensations: analyzing Paul Cezanne's watercolors and assessing their light sensitivity with microfade testing. Herit Sci. 2023; 11(1):39. doi:10.1186/s40494-023-00879-7
10.1186/s40494-023-00879-7 Google Scholar
- 72Morales C, Röhrs S, Meyer F, Marten S, Reiche I. Micro-fading testing on modern ink based pens and contemporary drawings from the Kupferstichkabinett Berlin. Berliner Beiträge Zur Archäometrie, Kunsttechnologie Und Konservierungswissenschaf. 2016; 24: 89-102.
- 73Tse S. Microfade testing for heritage institutions: a Canadian experience. Stud Conserv. 2019; 64(6): 337-351. doi:10.1080/00393630.2018.1527984
10.1080/00393630.2018.1527984 Google Scholar
- 74Vannucci G, Joram S, Beselin A, Röhrs S. Micro fading test for textile single yarns: a new methodology applied to the reformation tapestry to assess its sensitivity to light. Herit Sci. 2023; 11(1):1404. doi:10.1186/s40494-023-00884-w
10.1186/s40494-023-00884-w Google Scholar
- 75Townsend JH, Freemantle R. Three works on paper by Vincent Van Gogh: technical study, display considerations and a conjectural colour reconstruction. J Inst Conserv. 2023; 46(1): 3-22. doi:10.1080/19455224.2022.2161097
10.1080/19455224.2022.2161097 Google Scholar
- 76Cox CP. The influence of mordant on the lightfastness of yellow natural dyes. J Am Inst Conserv. 1982; 21(2): 43-58.
10.1179/019713682806028559 Google Scholar
- 77Ford B. Microfading: the state of the art for natural history collections. Coll Forum. 2013; 27(1–2): 54-71.
- 78Daher C, Tournié A, Sauvagnargues F, et al. Colored feathers in museum collections: a spectroscopic study of 3 bio-pigments and their lightfastness. J Cult Herit. 2020; 45: 59-70. doi:10.1016/j.culher.2020.05.007
10.1016/j.culher.2020.05.007 Google Scholar
- 79Riedler R, Pesme C, Druzik J, Gleeson M, Pearlstein E. A review of color-producing mechanisms in feathers and their influence on preventive conservation strategies. J Am Inst Conserv. 2014; 53(1): 44-65. doi:10.1179/1945233013Y.0000000020
10.1179/1945233013Y.0000000020 Google Scholar
- 80Pearlstein E, Keene L. Evaluating color and fading of red-shafted flicker (Colaptes auratus cafer) feathers: technical and cultural considerations. Stud Conserv. 2010; 55(2): 81-94. doi:10.1179/sic.2010.55.2.81
- 81Troalen LG, Röhrs S, Calligaro T, et al. A multi-analytical approach towards the investigation of Subarctic Athapaskan colouring of quillwork and its sensitivity to photo-degradation. Microchem J. 2016; 126: 83-91. doi:10.1016/j.microc.2015.11.053
- 82del Hoyo-Meléndez JM, Mecklenburg MF. Micro-fading spectrometry: a tool for real-time assessment of the light-fastness of dye/textile systems. Fibers Polym. 2012; 13(8): 1079-1085. doi:10.1007/s12221-012-1079-7
- 83del Hoyo-Meléndez JM, Gondko K, Mendys A, et al. A multi-technique approach for detecting and evaluating material inconsistencies in historical banknotes. Forensic Sci Int. 2016; 266: 266-337. doi:10.1016/j.forsciint.2016.06.018
10.1016/j.forsciint.2016.06.018 Google Scholar
- 84del Hoyo-Meléndez JM, Mecklenburg MF. An investigation of the reciprocity principle of light exposures using microfading spectrometry. Spectrosc Lett. 2011; 44(1): 52-62. doi:10.1080/00387010903508572
- 85Ford B. Non-destructive microfade testing at the National Museum of Australia. AICCM Bull. 2011; 32(1): 54-64. doi:10.1179/bac.2011.32.1.008
10.1179/bac.2011.32.1.008 Google Scholar
- 86Liang H, Lange R, Lucian A, Hyndes P, Townsend JH, Hackney S. Development of portable microfading spectrometers for measurement of light sensitivity of materials. In: ICOM Committee for Conservation 16th Triennial Meeting Lisbon Portugal 19–23 September 2011. International Council of Museums; 2011.
- 87del Hoyo-Meléndez JM, Mecklenburg MF. The use of micro-fading spectrometry to evaluate the light fastness of materials in oxygen-free environments. Spectrosc Lett. 2011; 44(2): 113-121. doi:10.1080/00387011003786050
- 88Tse S, Cipera L, Leckie C. Microfading to support exhibit decisions: the Catharine Parr Traill scrapbooks. Collect Forum. 2011; 25(1): 92-106.
- 89Mecklenburg MF, del Hoyo-Meléndez JM. Development and application of a mathematical model to explain fading rate inconsistencies observed in light-sensitive materials. Color Technol. 2012; 128(2): 139-146. doi:10.1111/j.1478-4408.2012.00359.x
- 90Lerwill A, Townsend JH, Thomas J, Hackney S, Caspers C, Liang H. Photochemical colour change for traditional watercolour pigments in low oxygen levels. Stud Conserv. 2015; 60(1): 15-32. doi:10.1179/2047058413Y.0000000108
- 91Maccarelli L, Brown H, Eng CW. The dilemma of fading food: an investigation into the light sensitivity of selected Ed Ruscha screenprints. Stud Conserv. 2016; 61: 308-310. doi:10.1080/00393630.2016.1193689
10.1080/00393630.2016.1193689 Google Scholar
- 92Stenger J, Khandekar N, Wilker A, Kallsen K, Kirby DP, Eremin K. The making of Mark Rothko's Harvard Murals. Stud Conserv. 2016; 61(6): 331-347. doi:10.1179/2047058415Y.0000000009
- 93Eng CW, Preusser FD, Schaeffer TT. Reflections on light monitoring: evaluating museum lighting options for modern and contemporary art. Stud Conserv. 2016; 61: 44-48. doi:10.1080/00393630.2016.1181317
10.1080/00393630.2016.1181317 Google Scholar
- 94Soleymani S, Ireland T, McNevin D. Effects of plant dyes, watercolors and acrylic paints on the colorfastness of Japanese tissue papers. J Am Inst Conserv. 2016; 55(1): 56-70. doi:10.1080/01971360.2015.1103101
10.1080/01971360.2015.1103101 Google Scholar
- 95Chua L, Hoevel C, Smith GD. Characterization of Haku Maki prints from the “poem” series using light-based techniques. Herit Sci. 2016; 4(1):25. doi:10.1186/s40494-016-0096-z
10.1186/s40494-016-0096-z Google Scholar
- 96Jue E, Eng CW, Takahatake N. The examination and conservation of a chiaroscuro woodcut: Antonio da Trento's Martyrdom of two saints, a case study. J Am Inst Conserv. 2016; 55(3): 154-165. doi:10.1080/01971360.2016.1186358
10.1080/01971360.2016.1186358 Google Scholar
- 97Prestel T. A classification system to enhance light-fastness data interpretation based on microfading tests and rate of colour change. Color Technol. 2017; 133(6): 506-512. doi:10.1111/cote.12304
- 98Rogge CE, Epley BA. Behind the Bocour label: identification of pigments and binders in historic Bocour oil and acrylic paints. J Am Inst Conserv. 2017; 56(1): 15-42. doi:10.1080/01971360.2016.1270634
10.1080/01971360.2016.1270634 Google Scholar
- 99Lowe BJ, Smith CA, Fraser-Miller SJ, et al. Light-ageing characteristics of Māori textiles: colour, strength and molecular change. J Cult Herit. 2017; 24: 60-68. doi:10.1016/j.culher.2016.11.012
- 100Fieberg JE, Knutås P, Hostettler K, Smith GD. “Paintings fade like flowers”: pigment analysis and digital reconstruction of a faded pink lake pigment in Vincent van Gogh's undergrowth with two figures. Appl Spectrosc. 2017; 71(5): 794-808. doi:10.1177/0003702816685097
- 101Jędrzejczyk RJ, Turnau K, Chlebda DK, et al. Paper material containing Ag cations immobilised in faujasite: synthesis, characterisation and antibacterial effects. Cellul. 2018; 25(2): 1353-1364. doi:10.1007/s10570-017-1635-9
- 102Smith CA, Paterson RA, Lowe BJ, Te Kanawa R. Consolidation of black-dyed Māori textile artefacts: evaluating the efficacy of sodium alginate. Stud Conserv. 2018; 63(3): 139-154. doi:10.1080/00393630.2016.1266150
- 103Klisińska-Kopacz A, Łydżba-Kopczyńska B, Czarnecka M, et al. Raman spectroscopy as a powerful technique for the identification of polymers used in cast sculptures from museum collections. J Raman Spectrosc. 2019; 50(2): 213-221. doi:10.1002/jrs.5407
- 104Young P, Silence P, Lam T. Microfadeometry of Miss Breme Jones watercolor with iron-gall ink inscriptions. Microsc Microanal. 2018; 24(S1): 2170-2171. doi:10.1017/s1431927618011339
10.1017/S1431927618011339 Google Scholar
- 105Tse S, Dignard C, Kata S, Henderson EJ. A study of the light sensitivity of birch bark. Stud Conserv. 2018; 63(7): 423-440. doi:10.1080/00393630.2018.1437880
10.1080/00393630.2018.1437880 Google Scholar
- 106Smith GD, Chen VJ, Hostettler KF, Phipps CE. Disappearing ink! Unraveling the fading of a contemporary design object. Phys Sci Rev. 2019; 4(7):20180018. doi:10.1515/psr-2018-0018
10.1515/psr?2018?0018 Google Scholar
- 107Beckett F, Holden A, Smith GD. Seeing the light: research, conservation and exhibition of a 1980s daylight fluorescent painted leather jacket designed by Sprouse and painted by Castronovo. J Am Inst Conserv. 2019; 58(4): 233-247. doi:10.1080/01971360.2019.1614290
10.1080/01971360.2019.1614290 Google Scholar
- 108Riutort-Mayol G, Gómez-Rubio V, Lerma JL, del Hoyo-Meléndez JM. Correlated functional models with derivative information for modeling microfading spectrometry data on rock art paintings. Math. 2020; 8(12): 1-25. doi:10.3390/math812214
10.3390/math812214 Google Scholar
- 109Barro L, Sanderson K, Centeno SA, Saunders B. The exhibition and characterization of seven salted paper prints. J Am Inst Conserv. 2020; 59(3–4): 171-185. doi:10.1080/01971360.2019.1696914
10.1080/01971360.2019.1696914 Google Scholar
- 110Panadero L, Eremin K, Bulat E. X-ray fluorescence analysis of Frédéric Flachéron's paper negatives,1848–1852. J Am Inst Conserv. 2020; 59(3–4): 186-193. doi:10.1080/01971360.2020.1834957
10.1080/01971360.2020.1834957 Google Scholar
- 111Świt P, Gargano M, del Hoyo-Meléndez JM. Beam characterization of a microfading tester: evaluation of several methods. Herit Sci. 2021; 9(1):78. doi:10.1186/s40494-021-00556-7
- 112Prestel T. Microfading tests through glass: evaluation and recommendations. Spectros Lett. 2021; 54(4): 244-253. doi:10.1080/00387010.2021.1926284
- 113Carrión-Ruiz B, Riutort-Mayol G, Molada-Tebar A, Lerma JL, Villaverde V. Color degradation mapping of rock art paintings using microfading spectrometry. J Cult Herit. 2021; 47: 100-108. doi:10.1016/j.culher.2020.10.002
10.1016/j.culher.2020.10.002 Google Scholar
- 114Tournié A, Sauvagnargues F, Daher C, et al. Illuminating yellow and red feathers in museum exhibits: microfading tests and light sensitivity of their bio-pigments. In: ICOM Committee for Conservation 19th Triennial Meeting Beijing China 17–21 May 2021. International Council of Museums; 2021.
- 115Facini M, Dooley KA, Maines C, Morales K, Delaney JK. Investigating Mark Rothko's water-based paintings on construction paper from the 1930s. Facture. 2021; 5: 30-62.
- 116Martins A, Prud'hom AC, Duranton M, et al. Jazz colors: pigment identification in the gouaches used by Henri Matisse. Herit. 2021; 4(4): 4205-4221. doi:10.3390/heritage4040231
10.3390/heritage4040231 Google Scholar
- 117Townsend JH, Fox C, Sacher B. A Picasso paper collage of 1913–14: assessment of fragility and sensitivity to light. SN Appl Sci. 2021; 3(6): 669. doi:10.1007/s42452-021-04659-5
10.1007/s42452-021-04659-5 Google Scholar
- 118Den Uijl MJ, Lokker A, van Dooren B, Schoenmakers PJ, Pirok BWJ, van Bommel MR. Comparing different light-degradation approaches for the degradation of crystal violet and eosin Y. Dyes Pigments. 2022; 197:109882. doi:10.1016/j.dyepig.2021.109882
10.1016/j.dyepig.2021.109882 Google Scholar
- 119Ciortan IM, Poulsson TG, George S, Hardeberg JY. Predicting pigment color degradation with time series models. Final Program and Proceedings - IS and T/SID Color Imaging Conference. Vol 30. Society for Imaging Science and Technology; 2022: 250-257. doi:10.2352/CIC.2022.30.1.44
10.2352/CIC.2022.30.1.44 Google Scholar
- 120Pesme C, Dunne K. The continuing development of display recommendations at the National Galleries of Scotland: exploring a value-based decision strategy for light risk mitigation. Stud Conserv. 2022; 67(sup1): 219-227. doi:10.1080/00393630.2022.2066319
10.1080/00393630.2022.2066319 Google Scholar
- 121Klisińska-Kopacz A, Krupska-Wolas P, Obarzanowski M, Kłosowska-Klechowska A, del Hoyo M. J. Spectroscopic characterization of sensitive museum plastic-based objects. In: R Furferi, R Giorgi, K Seymour, A Pelagotti, eds. The Future of Heritage Science and Technologies. Florence Heri-Tech. Vol 2022. Springer; 2022. Advanced Structured Materials: 107-118. doi:10.1007/978-3-031-15676-2_8
10.1007/978-3-031-15676-2_8 Google Scholar
- 122Sanderson K, Centeno SA, Stephens CH. A diagnostic approach for understanding and preserving silver-based photographs. Conserv. 2022; 360: 2 Retrieved from https://monografias.editorial.upv.es/index.php/con_360/article/view/395
- 123Guérin AM, Tse S, Dignard C. Microfade testing of fourteen natural dyes on wool: a comparison of five mordants. Stud Conserv. 2023; 68(5): 575-589. doi:10.1080/00393630.2022.2070709
- 124Ciortan IM, Poulsson TG, George S, Hardeberg JY. Tensor decomposition for painting analysis. Part 1: pigment characterization. Herit Sci. 2023; 11(1):76. doi:10.1186/s40494-023-00910-x
10.1186/s40494-023-00910-x Google Scholar
- 125Schmidtke Sobeck SJ, Smith GD. Shedding light on daylight fluorescent artists' pigments, part 2: spectral properties and light stability. J Am Inst Conserv. 2023; 62(3): 222-238. doi:10.1080/0197360.2022.2031460
10.1080/01971360.2022.2031460 Google Scholar
- 126Ford B, Korenberg C. Manufacturing variations in ISO Blue Wool fading standards under microfading exposure conditions. Stud Conserv. 2023; 69(3): 209-220. doi:10.1080/00393630.2023.2184555
10.1080/00393630.2023.2184555 Google Scholar
- 127Guan M, Chen Y, Li X, et al. Evaluation of color degradation on unearthed silks: a data analytical strategy based on microfading spectrometry. J Cult Herit. 2024; 66: 501-510. doi:10.1016/j.culher.2024.01.003
10.1016/j.culher.2024.01.003 Google Scholar
- 128Edwards G, Lundgren A, Wiggins MB, Hardman-Peavy C. Tricks of the shade: preservation of chemically developed shading papers based on DuoShade samples. J Am Inst Conserv. 2024; 1-18. doi:10.1080/01971360.2023.2293529
10.1080/01971360.2023.2293529 Google Scholar
- 129Druzik J, Pesme C. Comparison of five microfading tester (MFT) designs. RATS Postprints Volume 2. American Institute for Conservation; 2010: 14-30.
- 130Beltran VL. Advancing Microfading Tester Practice: A Report from an Experts Meeting Organized by the Getty Conservation Institute. Getty Conservation Institute; 2018.
- 131Beltran VL, Pesme C, Freeman S, Benson M. Microfading Tester: Light Sensitivity Assessment and Role in Lighting Policy. Getty Conservation Institute; 2021.
- 132Ford BL. Monitoring colour change in textiles on display. Stud Conserv. 1992; 37(1): 1-11. doi:10.2307/1506432
10.2307/1506432 Google Scholar
- 133Parracha JL, Veiga R, Nunes L, Flores-Colen I. Effects of hygrothermal and natural aging on the durability of multilayer insulation systems incorporating thermal mortars with EPS and aerogel. Cem Concr Compos. 2024; 148:105483. doi:10.1016/j.cemconcomp.2024.105483
- 134Jovičević-Klug M, Rezar R, Jovičević-Klug P, Podgornik B. Influence of deep cryogenic treatment on natural and artificial aging of Al-Mg-Si alloy EN AW 6026. J Alloys Compd. 2022; 899:163323. doi:10.1016/j.jallcom.2021.163323
- 135Bunsen RW, Roscoe HE. Photo-chemical researches. Part IV. Philos Trans R Soc Lond. 1859; 149: 879-926.
10.1098/rstl.1859.0035 Google Scholar
- 136Arroyo-Figueroa G, Ruiz-Aguilar GML, López-Martínez L, González-Sánchez G, Cuevas-Rodríguez G, Rodríguez-Vázquez R. Treatment of a textile effluent from dyeing with cochineal extracts using Trametes versicolor fungus. Sci World J. 2011; 11: 1005-1016. doi:10.1100/tsw.2011.99
- 137Pirok BWJ, Moro G, Meekel N, Berbers SVJ, Schoenmakers PJ, van Bommel MR. Mapping degradation pathways of natural and synthetic dyes with LC-MS: influence of solvent on degradation mechanisms. J Cult Herit. 2019; 38: 29-36. doi:10.1016/j.culher.2019.01.003
- 138Rader Bowers LM, Schmidtke Sobeck SJ. Impact of medium and ambient environment on the photodegradation of carmine in solution and paints. Dyes Pigments. 2016; 127: 18-24. doi:10.1016/j.dyepig.2015.12.012
- 139Koperska M, Łojewski T, Łojewska J. Vibrational spectroscopy to study degradation of natural dyes. Assessment of oxygen-free cassette for safe exposition of artefacts. Anal Bioanal Chem. 2011; 399: 3271-3283. doi:10.1007/s00216-010-4460-7
- 140Ghelardi E, Degano I, Colombini MP, et al. A multi-analytical study on the photochemical degradation of synthetic organic pigments. Dyes Pigments. 2015; 123: 396-403. doi:10.1016/j.dyepig.2015.07.029
- 141Meetani MA, Rauf MA, Hisaindee S, Khaleel A, Alzamly A, Ahmad A. Mechanistic studies of photoinduced degradation of Orange G using LC/MS. RSC Adv. 2011; 1(3): 490-497. doi:10.1039/c1ra00177a
- 142Rauf MA, Ashraf SS. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J. 2009; 151(1–3): 10-18. doi:10.1016/j.cej.2009.02.026
- 143Torres-Pierna H, Ruiz-Molina D, Roscini C. Highly transparent photochromic films with a tunable and fast solution-like response. Mater Horiz. 2020; 7(10): 2749-2759. doi:10.1039/d0mh01073a
- 144Confortin D, Neevel H, Brustolon M, et al. Crystal violet: study of the photo-fading of an early synthetic dye in aqueous solution and on paper with HPLC-PDA, LC-MS and FORS. J Phys: Conf Ser. 2010; 231:12011. doi:10.1088/1742-6596/231/1/012011
10.1088/1742-6596/231/1/012011 Google Scholar
- 145Morris HR, Whitmore P. “Virtual fading” of art objects: simulating the future fading of artifacts by visualizing micro-fading test results. J Am Inst Conserv. 2007; 46(3): 215-228. doi:10.1179/019713607806112279
10.1179/019713607806112279 Google Scholar
- 146Pretzel B. Determining the colour fastness of the Bullerswood carpet. Stud Conserv. 2000; 45(sup1): 150-154. doi:10.1179/sic.2000.45.supplement-1.150
10.1179/sic.2000.45.Supplement-1.150 Google Scholar
- 147Derbyshire A, Ashley-Smith J. A proposed practical lighting policy for works of art on paper at the V&A. In: ICOM Committee for Conservation 12th Triennial Meeting Lyon France, 29 August–3 September 1999. International Council of Museums; 1999.
- 148Brokerhof AW, Reuss M, MacKinnon F, et al. Optimum access at minimum risk- the dilemma of displaying Japanese woodblock prints. Stud Conserv. 2008; 53(sup1): 82-87. doi:10.1179/sic.2008.53.supplement-1.82
10.1179/sic.2008.53.Supplement-1.82 Google Scholar
- 149 Frequently asked questions about the Tokyo National Museum. Tokyo National Museum. Accessed July 9, 2024. https://www.tnm.jp/modules/r_free_page/index.php?id=156&lang=en
- 150 Light Damage Calculator. Canadian Conservation Institute. Accessed July 31, 2024. https://app.pch.gc.ca/application/cdl-ldc/description-about.app?lang=en
- 151Dang R, Zhang F, Yang D, Guo W, Liu G. Spectral damage model for lighting paper and silk in museum. J Cult Herit. 2020; 45: 249-253. doi:10.1016/j.culher.2020.03.001
10.1016/j.culher.2020.03.001 Google Scholar
- 152Dang R, Kang Y, Tan H, Yang Y. Color damage of visible light on plain-woven silk in different conservation states of paintings and calligraphy in collections. Fibers Polym. 2024; 25(1): 235-242. doi:10.1007/s12221-023-00414-2
- 153Dang R, Tan H, Liu G, Wang N. Effects of illumination on paper and silk substrates of traditional Chinese painting and calligraphy measured with Raman spectroscopy. LEUKOS. 2020; 16(1): 87-95. doi:10.1080/15502724.2019.1570851
10.1080/15502724.2019.1570851 Google Scholar
- 154Whitmore PM, Bailie C, Connors SA. Micro-fading tests to predict the result of exhibition: progress and prospects. Stud Conserv. 2000; 45(sup1): 200-205. doi:10.1179/sic.2000.45.Supplement-1.200
10.1179/sic.2000.45.Supplement-1.200 Google Scholar
- 155Ford B, Smith N. The development of a significance-based lighting framework at the National Museum of Australia. AICCM Bull. 2011; 32(1): 80-86. doi:10.1179/bac.2011.32.1.011
10.1179/bac.2011.32.1.011 Google Scholar
- 156 E Avrami, S Macdonald, R Mason, D Myers, eds. Values in Heritage Management. Getty Publications; 2019.
- 157Henderson J, Waller R, Hopes D. Begin with benefits: reducing bias in conservation decision-making. Stud Conserv. 2020; 65(S1): 142-147. doi:10.1080/00393630.2020.1787638
10.1080/00393630.2020.1787638 Google Scholar
- 158Taylor J, Cassar M. Representation and intervention: the symbiotic relationship of conservation and value. Stud Conserv. 2008; 53(sup1): 7-11. doi:10.1179/sic.2008.53.supplement-1.7
10.1179/sic.2008.53.Supplement-1.7 Google Scholar
- 159Polak A, Kelman T, Murray P, et al. Hyperspectral imaging combined with data classification techniques as an aid for artwork authentication. J Cult Herit. 2017; 26: 1-11. doi:10.1016/j.culher.2017.01.013
- 160Qi W, Mu T, Chen S, Wang Y. Composition analysis of white mineral pigment based on convolutional neural network and Raman spectrum. J Raman Spectrosc. 2022; 53(4): 746-754. doi:10.1002/jrs.6300
- 161Andric V, Kvascev G, Cvetanovic M, Stojanovic S, Bacanin N, Gajic-Kvascev M. Deep learning assisted XRF spectra classification. Sci Rep. 2024; 14(1): 3666. doi:10.1038/s41598-024-53988-z
- 162Ciortan IM, Poulsson TG, George S, Hardeberg JY. Tensor decomposition for painting analysis. Part 2: spatio-temporal simulation. Herit Sci. 2023; 11(1):84. doi:10.1186/s40494-023-00913-8
10.1186/s40494?023?00913?8 Google Scholar
- 163Łojewski T. Document analysis at AGH University of Science and Technology. In: 2018 Metrology for Archaeology and Cultural Heritage (MetroArchaeo), Cassino, Italy. The Institute of Electrical and Electronics Engineers (IEEE); 2018:92–96.
- 164Haddad A, Nakie-Miller T, Jenks JB, Kowach G. Andy Warhol and his amazing technicolor shoes: characterizing the synthetic dyes found in Dr. Ph Martin's Synchromatic Transparent Watercolors and Used in À la Recherche du Shoe Perdu. Colorants. 2023; 2: 1-21. doi:10.3390/colorants2010001
10.3390/colorants2010001 Google Scholar