Solid Geometry Processing on Deconstructed Domains
Silvia Sellán
Department of Physics, University of Oviedo, Uviéu/Oviedo, Asturies/Asturias, Spain
Search for more papers by this authorHerng Yi Cheng
Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
Search for more papers by this authorYuming Ma
Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
Search for more papers by this authorMitchell Dembowski
Department of Mathematics, Ryerson University, Toronto, Ontario, Canada
Search for more papers by this authorAlec Jacobson
Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
Search for more papers by this authorSilvia Sellán
Department of Physics, University of Oviedo, Uviéu/Oviedo, Asturies/Asturias, Spain
Search for more papers by this authorHerng Yi Cheng
Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
Search for more papers by this authorYuming Ma
Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
Search for more papers by this authorMitchell Dembowski
Department of Mathematics, Ryerson University, Toronto, Ontario, Canada
Search for more papers by this authorAlec Jacobson
Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
Search for more papers by this authorAbstract
Many tasks in geometry processing are modelled as variational problems solved numerically using the finite element method. For solid shapes, this requires a volumetric discretization, such as a boundary conforming tetrahedral mesh. Unfortunately, tetrahedral meshing remains an open challenge and existing methods either struggle to conform to complex boundary surfaces or require manual intervention to prevent failure. Rather than create a single volumetric mesh for the entire shape, we advocate for solid geometry processing on deconstructed domains, where a large and complex shape is composed of overlapping solid subdomains. As each smaller and simpler part is now easier to tetrahedralize, the question becomes how to account for overlaps during problem modelling and how to couple solutions on each subdomain together algebraically. We explore how and why previous coupling methods fail, and propose a method that couples solid domains only along their boundary surfaces. We demonstrate the superiority of this method through empirical convergence tests and qualitative applications to solid geometry processing on a variety of popular second-order and fourth-order partial differential equations.
References
- [AA00] Andersen E. D., Andersen K. D.: The mosek interior point optimizer for linear programming: An implementation of the homogeneous algorithm. In High Performance Optimization. Springer, Boston, MA, (2000), pp. 197–232.
- [ACSYD05]
Alliez P., Cohen-Steiner D., Yvinec M., Desbrun M.: Variational tetrahedral meshing. In ACM SIGGRAPH 2005 Courses (2005), ACM, p. 10.
10.1145/1198555.1198669 Google Scholar
- [AGCO13] Asafi S., Goren A., Cohen-Or D.: Weak convex decomposition by lines-of-sight. In Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry Processing (2013), Eurographics Association, pp. 23–31.
- [Att10] Attene M.: A lightweight approach to repairing digitized polygon meshes. Visual Computer 26, 11 (2010), 1393–1406.
- [BBK05] Botsch M., Bommes D., Kobbelt L.: Efficient linear system solvers for mesh processing. Mathematics of Surfaces XI. Springer, Berlin, Heidelberg, (2005), pp. 62–83.
10.1007/11537908_5 Google Scholar
- [BDS*18] Barill G., Dickson N., Schmidt R., Levin D. I., Jacobson A.: Fast winding numbers for soups and clouds. ACM Transactions on Graphics 37, (2018), 43:1–43:12.
- [Ben85] Benek J., Buning P. S. J.: A 3-D chimera grid embedding technique. In 7th Computational Physics Conference 85, (1985), 1523.
10.2514/6.1985-1523 Google Scholar
- [BF09] Bernstein G., Fussell D.: Fast, exact, linear booleans. In Proceedings of SGP (2009).
10.1111/j.1467-8659.2009.01504.x Google Scholar
- [BGF15] Barki H., Guennebaud G., Foufou S.: Exact, robust, and efficient regularized booleans on general 3D meshes. Computers and Mathematics with Applications 70, 6 (2015), 1235–1254.
- [BK04a] Botsch M., Kobbelt L.: An intuitive framework for real-time freeform modeling. ACM Transactions on Graphics 23, 3 (2004), 630–634.
- [BK04b]
Botsch M., Kobbelt L.: A remeshing approach to multiresolution modeling. In Proceedings of SGP (Nice, France 2004), ACM, pp. 189–196.
10.1145/1057432.1057457 Google Scholar
- [BS15] Bercovier M., Soloveichik I.: Overlapping non-matching meshes domain decomposition method in isogeometric analysis. arXiv preprint arXiv:1502.03756 (2015).
- [BSD83] Benek J., Steger J., Dougherty F.: A flexible grid embedding technique with application to the Euler equations. In AIAA Computational Fluid Dynamics Conference (1983).
- [BTST12] Bharaj G., Thormählen T., Seidel H.-P., Theobalt C.: Automatically rigging multi-component characters. Computer Graphics Forum 30, 2 (2012), 755–764.
- [CDS12] Cheng S.-W., Dey T. K., Shewchuk J.: Delaunay Mesh Generation. CRC Press, Boca Raton, FL, 2012.
- [CFD12] Cuillière J.-C., François V., Drouet J.-M.: Automatic 3D mesh generation of multiple domains for topology optimization methods. In IMR (2012).
- [CK10] Chaudhuri S., Koltun V.: Data-driven suggestions for creativity support in 3D modeling. ACM Transactions on Graphics 29, 6 (2010), 183:1–183:10.
- [CKGK11] Chaudhuri S., Kalogerakis E., Guibas L., Koltun V.: Probabilistic reasoning for assembly-based 3D modeling. ACM Transactions on Graphics 30, 4 (2011), 35:1–35:10.
- [CWW13] Crane K., Weischedel C., Wardetzky M.: Geodesics in heat: A new approach to computing distance based on heat flow. ACM Transactions on Graphics 32, 5 (2013), 152:1–152:11.
- [Dav06] Davis T. A.: Cholmod: A Sparse Supernodal Cholesky Factorization and Modification Package, Version 3.0. University of Florida, Gainesville, FL, 2006.
- [DCB13] Doran C., Chang A., Bridson R.: Isosurface stuffing improved: Acute lattices and feature matching. SIGGRAPH Talks (2013).
- [DHB*16] Da F., Hahn D., Batty C., Wojtan C., Grinspun E.: Surface-only liquids. ACM Transactions on Graphics 35, 4 (2016), 78:1–78:12.
- [DIP*18] Du T., Inala J. P., Pu Y., Spielberg A., Schulz A., Rus D., Solar-Lezama A., Matusik W.: InverseCSG: Automatic conversion of 3D models to CSG trees. In SIGGRAPH Asia 2018 Technical Papers (2018), ACM, pp. 213:1–213:16.
- [DMYN08] Dobashi Y., Matsuda Y., Yamamoto T., Nishita T.: A fast simulation method using overlapping grids for interactions between smoke and rigid objects. Computer Graphics Forum 27, 2 (2008), 477–486.
- [DMZ*17] Devito Z., Mara M., Zollhöfer M., Bernstein G., Ragan-Kelley J., Theobalt C., Hanrahan P., Fisher M., Niessner M.: Opt: A domain specific language for non-linear least squares optimization in graphics and imaging. ACM Transactions on Graphics 36, 5 (2017), 171:1–171:27.
- [EB15] Edwards E., Bridson R.: The discretely-discontinuous Galerkin coarse grid for domain decomposition. CoRR (2015), arXiv:1504.00907.
- [EQYF13] English R. E., Qiu L., Yu Y., Fedkiw R.: Chimera grids for water simulation. In Proceedings of SCA (2013).
10.1145/2485895.2485897 Google Scholar
- [For97] Fortune S.: Vertex-rounding a three-dimensional polyhedral subdivision. Discrete & Computational Geometry 22, 4 (1997), 593–618.
- [FSH11] Finch M., Snyder J., Hoppe H.: Freeform vector graphics with controlled thin-plate splines. ACM Transactions on Graphics 30, 6 (2011), 166.
- [GHF86] Goldfeather J., Hultquist J. P. M., Fuchs H.: Fast constructive-solid geometry display in the pixel-powers graphics system. In Proceedings of SIGGRAPH (1986).
10.1145/15922.15898 Google Scholar
- [GJTP17] Gao X., Jakob W., Tarini M., Panozzo D.: Robust hex-dominant mesh generation using field-guided polyhedral agglomeration. ACM Transactions on Graphics 36, 4 (2017), 114:1–114:13.
- [Gol73] Golub G. H.: Some modified matrix eigenvalue problems. SIAM Review 15, 2 (1973), 318–334.
- [GSLF05] Guendelman E., Selle A., Losasso F., Fedkiw R.: Coupling water and smoke to thin deformable and rigid shells. ACM Transactions on Graphics 24, 3 (2005), 973–981.
- [GSP*06] Gal R., Sorkine O., Popa T., Sheffer A., Cohen-Or D.: Non-realistic expressive modeling. In SIGGRAPH Sketches (2006).
10.1145/1179849.1179975 Google Scholar
- [HDA17] Herholz P., Davis T. A., Alexa M.: Localized solutions of sparse linear systems for geometry processing. ACM Transactions on Graphics 36, 6 (2017), 183:1–183:8.
- [Hen94] Henshaw W. D.: A fourth-order accurate method for the incompressible Navier–Stokes equations on overlapping grids. JCP 113, 1 (1994), 13–25.
- [HZG*18] Hu Y., Zhou Q., Gao X., Jacobson A., Zorin D., Panozzo D.: Tetrahedral meshing in the wild. ACM Transactions on Graphics 37, 4 (July 2018), 60:1–60:14.
- [J*16] Jacobson A., et al.: gptoolbox: Geometry processing toolbox (2016). http://github.com/alecjacobson/gptoolbox. Accessed July 1, 2018.
- [JBPS11] Jacobson A., Baran I., Popović J., Sorkine O.: Bounded biharmonic weights for real-time deformation. ACM Transactions on Graphics 57, 4 (2011), 99–106.
- [JC08] Joshi P., Carr N. A.: Repoussé: Automatic inflation of 2D artwork. In Proceedings of SBIM (Annecy, France, 2008), ACM, pp. 49–55.
- [JMD*07] Joshi P., Meyer M., DeRose T., Green B., Sanocki T.: Harmonic coordinates for character articulation. ACM Transactions on Graphics 26, 3 (2007), 71:1–71:9.
- [JP99] James D. L., Pai D. K.: ArtDefo: Accurate real time deformable objects. In Proceedings of SIGGRAPH (1999).
10.1145/311535.311542 Google Scholar
- [JP*18] Jacobson A., Panozzo D., et al.: libigl: A simple C++ geometry processing library (2018). http://libigl.github.io/libigl/. Accessed July 1, 2018.
- [JTSZ10] Jacobson A., Tosun E., Sorkine O., Zorin D.: Mixed finite elements for variational surface modeling. In Proceedings of SGP (2010).
10.1111/j.1467-8659.2010.01765.x Google Scholar
- [Kau12] Kaufmann P.: Discontinuous Galerkin FEM in Computer Graphics. PhD thesis, ETH Zurich, 2012.
- [Kaz15] Kazhdan M.: Fast and exact Poisson solvers on symmetric geometries. Computer Graphics Forum 34, 5 (2015), 153–165.
- [KBH06] Kazhdan M., Bolitho M., Hoppe H.: Poisson surface reconstruction. In Proceedings of SGP (2006).
- [KFS13] Krishnan D., Fattal R., Szeliski R.: Efficient preconditioning of Laplacian matrices for computer graphics. ACM Transactions on Graphics 32, 4 (2013), 142:1–142:15.
- [KKRC97] Kiris C., Kwak D., Rogers S., Chang I.-D.: Computational approach for probing the flow through artificial heart devices. Biomechanical Engineering 119, 4 (1997), 452–460.
- [LS07] Labelle F., Shewchuk J. R.: Isosurface stuffing: Fast tetrahedral meshes with good dihedral angles. ACM Transactions on Graphics 26, 3 (2007), 57:1–57:10.
- [LSLR01] Loehner R., Sharov D., Luo H., Ramamurti R.: Overlapping unstructured grids. In 39th Aerospace Sciences Meeting & Exhibit (2001).
10.2514/6.2001-439 Google Scholar
- [MDSB03] Meyer M., Desbrun M., Schröder P., Barr A. H.: Discrete differential-geometry operators for triangulated 2-manifolds. In Visualization and Mathematics III Springer, Berlin, Heidelberg, (2003), pp. 35–57.
10.1007/978-3-662-05105-4_2 Google Scholar
- [MGL*15] Malgat R., Gilles B., Levin D. I. W., Nesme M., Faure F.: Multifarious hierarchies of mechanical models for artist assigned levels-of-detail. In Proceedings of SCA (2015).
10.1145/2786784.2786800 Google Scholar
- [Nak99] Nakahashi K., Togashi F. S. D.: An intergrid-boundary definition method for overset unstructured grid approach. In 14th Computational Fluid Dynamics Conference (1999).
10.2514/6.1999-3304 Google Scholar
- [Pes73] Peskin C.: Flow patterns around heart valves: A digital computer method for solving the equations of motion. IEEE Transactions on Biomedical Engineering 4, (1973), 316–317.
- [PTSZ11] Pietroni N., Tarini M., Sorkine O., Zorin D.: Global parametrization of range image sets. ACM Transactions on Graphics 30, 6 (2011), 149:1–149:10.
- [RBG*09] Reuter M., Biasotti S., Giorgi D., Patanè G., Spagnuolo M.: Discrete Laplace–Beltrami operators for shape analysis and segmentation. Computers & Graphics 33, 3 (2009), pp. 381–390.
- [Rus11] Rustamov R. M.: Multiscale biharmonic kernels. In Proceedings of SGP (2011).
10.1111/j.1467-8659.2011.02026.x Google Scholar
- [SBGG04] Smith B., Bjorstad P., Gropp W., Gropp W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge, UK, 2004.
- [SBSCO06] Sharf A., Blumenkrants M., Shamir A., Cohen-Or D.: SnapPaste: An interactive technique for easy mesh composition. Visual Computer 22, 9 (2006), 835–844.
- [Sch70] Schwarz H.: Übereinen grenzübergang durch alternierendes verfahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 15 (1870), 272–286.
- [SCV14] Solomon J., Crane K., Vouga E.: Laplace–Beltrami: The swiss army knife of geometry. In SGP Courses (2014).
- [SGWJ17] Stein O., Grinspun E., Wardetzky M., Jacobson A.: Natural boundary conditions for smoothing in geometry processing. ACM Transactions on Graphics (TOG) 37, 2 (2017), 23:1–23:13.
- [She96] Shewchuk J. R.: Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In Applied Computational Geometry Towards Geometric Engineering. M.C. Lin and D. Manocha (Eds.). Springer, Berlin, Heidelberg (1996), pp. 203–222.
- [She02] Shewchuk J. R.: What is a good linear element? Interpolation, conditioning, and quality measures. In Proceedings of IMR (2002).
- [Si03] Si H.: TetGen: A 3D Delaunay Tetrahedral Mesh Generator. ACM Transactions on Mathematical Software (TOMS) 41, 2 (January 2015), 11:1–11:36.
- [SLCO*04] Sorkine O., Lipman Y., Cohen-Or D., Alexa M., Rössl C., Seidel H.-P.: Laplacian surface editing. In Proceedings of SGP (2004).
10.1145/1057432.1057456 Google Scholar
- [SPSH*17] Shtengel A., Poranne R., Sorkine-Hornung O., Kovalsky S. Z., Lipman Y.: Geometric optimization via composite majorization. ACM Transactions on Graphics 36, 4 (2017), 38:1–38.11.
- [SRUL16] Sokolov D., Ray N., Untereiner L., Lévy B.: Hexahedral-dominant meshing. ACM Transactions on Graphics 35, 5 (2016), 157:1–157:23.
- [SS10a] Schmidt R., Singh K.: Drag, Drop, and Clone: An Interactive Interface for Surface Composition. Technical report, University of Toronto, 2010.
- [SS10b] Schmidt R., Singh K.: Meshmixer: An interface for rapid mesh composition. In ACM SIGGRAPH Talks (2010).
10.1145/1837026.1837034 Google Scholar
- [SVB17] Solomon J., Vaxman A., Bommes D.: Boundary element octahedral fields in volumes. ACM Transactions on Graphics 36, 3 (2017), 28:1–28:16.
- [SVJ15] Sacht L., Vouga E., Jacobson A.: Nested cages. ACM Transactions on Graphics 34, 6 (2015), pp. 170:1–170:14.
- [WMKG07] Wardetzky M., Mathur S., Kälberer F., Grinspun E.: Discrete Laplace operators: No free lunch. In Proceedings of SGP (2007).
- [WMW86] Wyvill G., McPheeters C., Wyvill B.: Soft objects. In Advanced Computer Graphics. T.L. Kunii (Eds.). Springer, Tokyo (1986), pp. 113–128.
10.1007/978-4-431-68036-9_8 Google Scholar
- [ZCL09] Zhang L., Cui T., Liu H.: A set of symmetric quadrature rules on triangles and tetrahedra. Computational Mathematics 27, 1 (2009), 89–96.
- [ZGZJ16] Zhou Q., Grinspun E., Zorin D., Jacobson A.: Mesh arrangements for solid geometry. ACM Transactions on Graphics 5, 4 (2016), 39:1–39:15.
- [ZJ16] Zhou Q., Jacobson A.: Thingi10k: A dataset of 10,000 3D-printing models. CoRR (2016).
- [ZT00] Zienkiewicz O., Taylor R.: The Finite Element Method. Butterworth-Heinemann, Oxford, UK, 2000.