Robust Structure-Based Shape Correspondence
Abstract
We present a robust method to find region-level correspondences between shapes, which are invariant to changes in geometry and applicable across multiple shape representations. We generate simplified shape graphs by jointly decomposing the shapes, and devise an adapted graph-matching technique, from which we infer correspondences between shape regions. The simplified shape graphs are designed to primarily capture the overall structure of the shapes, without reflecting precise information about the geometry of each region, which enables us to find correspondences between shapes that might have significant geometric differences. Moreover, due to the special care we take to ensure the robustness of each part of our pipeline, our method can find correspondences between shapes with different representations, such as triangular meshes and point clouds. We demonstrate that the region-wise matching that we obtain can be used to find correspondences between feature points, reveal the intrinsic self-similarities of each shape and even construct point-to-point maps across shapes. Our method is both time and space efficient, leading to a pipeline that is significantly faster than comparable approaches. We demonstrate the performance of our approach through an extensive quantitative and qualitative evaluation on several benchmarks where we achieve comparable or superior performance to existing methods.
References
- [ASC11] Aubry M., Schlickewei U., Cremers D.: The wave kernel signature: A quantum mechanical approach to shape analysis. Proceedings of ICCV (2011).
- [ASK*05] Anguelov D., Srinivasan P., Koller D., Thrun S., Rodgers J., Davis J.: SCAPE: Shape completion and animation of people. ACM Transactions on Graphics (TOG) 24 (2005), 408–416.
- [BB13] Barra V., Biasotti S.: 3D shape retrieval using kernels on extended Reeb graphs. Pattern Recognition 46, 11 (2013), 2985–2999.
- [BBK06] Bronstein A. M., Bronstein M. M., Kimmel R.: Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching. Proceedings of the National Academy of Sciences 103, 5 (2006), 1168–1172.
- [BBK08] Bronstein A. M., Bronstein M. M., Kimmel R.: Numerical Geometry of Non-Rigid Shapes. Springer Science & Business Media, New York, NY, 2008.
- [BBM05] Berg A. C., Berg T. L., Malik J.: Shape matching and object recognition using low distortion correspondences. In Proceedings of IEEE Conference on CVPR (2005), pp. 26–33.
- [BCBB16] Biasotti S., Cerri A., Bronstein A., Bronstein M.: Recent trends, applications, and perspectives in 3d shape similarity assessment. Computer Graphics Forum 35 (2016), 87–119.
- [BR07] Brown B. J., Rusinkiewicz S.: Global non-rigid alignment of 3-d scans. ACM Transactions on Graphics (TOG) 26 (2007), 21.
- [BRLB14] Bogo F., Romero J., Loper M., Black M. J.: FAUST: Dataset and evaluation for 3D mesh registration. In Proceedings of CVPR (2014).
10.1109/CVPR.2014.491 Google Scholar
- [BSW09] Belkin M., Sun J., Wang Y.: Constructing laplace operator from point clouds in rd. In Proceedings of 20th ACM-SIAM Symposium on Discrete Algorithms (2009), pp. 1031–1040.
10.1137/1.9781611973068.112 Google Scholar
- [CGF09] Chen X., Golovinskiy A., Funkhouser T.: A benchmark for 3D mesh segmentation. ACM Transactions on Graphics (SIGGRAPH) 28, 3 (2009), 73:1–12.
- [CLM*11] Chang, W., Li H., Mitra N., Pauly M., Rusinkiewicz S., Wand M.: Computing correspondences in geometric data sets. In Eurographics 2011 - Tutorials (2011), R. Martin and J. C. Torres (Eds.), The Eurographics Association.
- [CO15] Carrière M., Oudot S.: Structure and stability of the 1-dimensional mapper. arXiv preprint arXiv:1511.05823, 2015.
- [CZ08] Chang W., Zwicker M.: Automatic registration for articulated shapes. Computer Graphics Forum 27 (2008), 1459–1468.
- [DN13] Doraiswamy H., Natarajan V.: Computing Reeb graphs as a union of contour trees. IEEE Transactions on Visualization and Computer Graphics 19, 2 (2013), 249–262.
- [GBAL09] Gebal K., Bærentzen J. A., Aanæs H., Larsen R.: Shape analysis using the auto diffusion function. Computer Graphics Forum 28 (2009), 1405–1413.
- [GSTOG16] Ganapathi-Subramanian V., Thibert B., Ovsjanikov M., Guibas L.: Stable region correspondences between non-isometric shapes. Computer Graphics Forum 35 (2016), 121–133.
- [KCKK12] Kalogerakis E., Chaudhuri S., Koller D., Koltun V.: A probabilistic model of component-based shape synthesis. ACM Transactions on Graphics (SIGGRAPH) 31, 4 (2012), 55:1–11.
- [KKBL15] Kezurer I., Kovalsky S. Z., Basri R., Lipman Y.: Tight relaxation of quadratic matching. Computer Graphics Forum 34, 5 (2015), 115–128.
- [KLF11] Kim V. G., Lipman Y., Funkhouser T.: Blended intrinsic maps. ACM Transactions on Graphics (TOG) 30 (2011), 79:1–79:12.
- [KvKSHCO15] Kleiman Y., van Kaick O., Sorkine-Hornung O., Cohen-Or D.: SHED: Shape edit distance for fine-grained shape similarity. ACM Transactions on Graphics (SIGGRAPH Asia) 34, 6 (2015), 235:1–235:11.
- [LF09] Lipman Y., Funkhouser T.: Möbius voting for surface correspondence. ACM Transactions on Graphics (TOG) 28 (2009), 72:1–72:12.
- [LH05] Leordeanu M., Hebert M.: A spectral technique for correspondence problems using pairwise constraints. In Proceedings of ICCV (2005), pp. 1482–1489.
- [LKF12] Liu T., Kim V. G., Funkhouser T.: Finding surface correspondences using symmetry axis curves. Computer Graphics Forum 31 (2012), 1607–1616.
- [LSP08] Li H., Sumner R. W., Pauly M.: Global correspondence optimization for non-rigid registration of depth scans. Computer Graphics Forum 27 (2008), 1421–1430.
- [Mém11] Mémoli F.: Gromov–Wasserstein distances and the metric approach to object matching. Foundations of Computational Mathematics 11, 4 (2011), 417–487.
- [NO17] Nogneng D., Ovsjanikov M.: Informative descriptor preservation via commutativity for shape matching. Computer Graphics Forum (Proc. SGP) 36 (2017), 259–267.
- [OBCS*12] Ovsjanikov M., Ben-Chen M., Solomon J., Butscher A., Guibas L.: Functional maps: A flexible representation of maps between shapes. ACM Transactions on Graphics (TOG) 31, 4 (2012).
- [OMMG10] Ovsjanikov M., Mérigot Q., Mémoli F., Guibas L.: One point isometric matching with the heat kernel. Computer Graphics Forum (SGP) 29, 5 (2010), 1555–1564.
- [OMPG13] Ovsjanikov M., Mérigot Q., Pătrăucean V., Guibas L.: Shape matching via quotient spaces. Computer Graphics Forum 32 (2013).
- [PBB13a] Pokrass J., Bronstein A. M., Bronstein M. M.: Partial shape matching without point-wise correspondence. Numerical Mathematics: Theory, Methods and Applications 1 (2013), 223–244.
- [PBB*13b] Pokrass J., Bronstein A. M., Bronstein M. M., Sprechmann P., Sapiro G.: Sparse modeling of intrinsic correspondences. Computer Graphics Forum 32, 2pt4 (2013), 459–468.
- [RBC14] Rodola E., Bulò S. R., Cremers D.: Robust region detection via consensus segmentation of deformable shapes. Computer Graphics Forum 33 (2014), 97–106.
- [RCB*17] Rodolà E., Cosmo L., Bronstein M. M., Torsello A., Cremers D.: Partial functional correspondence. Computer Graphics Forum 36 (2017), 222–236.
- [SMC07] Singh G., Mémoli F., Carlsson G. E.: Topological methods for the analysis of high dimensional data sets and 3D object recognition. In Proceedings of SPBG (2007), pp. 91–100.
- [SNB*12] Solomon J., Nguyen A., Butscher A., Ben-Chen M., Guibas L.: Soft maps between surfaces. Computer Graphics Forum 31 (2012), 1617–1626.
- [SOG09] Sun J., Ovsjanikov M., Guibas L.: A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum 28 (2009), 1383–1392.
- [SPKS16] Solomon J., Peyré G., Kim V. G., Sra S.: Entropic metric alignment for correspondence problems. ACM Transactions on Graphics (Proc. SIGGRAPH) 35, 4 (2016), 72:1–72:1.
- [SSGD03] Sundar H., Silver D., Gagvani N., Dickinson S.: Skeleton based shape matching and retrieval. In Proceedings of Shape Modeling International (2003), IEEE, pp. 130–139.
10.1109/SMI.2003.1199609 Google Scholar
- [SvKK*11] Sidi O., van Kaick O., Kleiman Y., Zhang H., Cohen-Or D.: Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Transactions on Graphics (SIGGRAPH Asia) 30, 6 (2011), 126:1–126:10.
- [SY11] Sahillioglu, Y., Yemez, Y.: Coarse-to-fine combinatorial matching for dense isometric shape correspondence. Computer Graphics Forum 30, (2011), 1461–1470.
- [TCL*13] Tam G. K., Cheng Z.-Q., Lai Y.-K., Langbein F. C., Liu Y., Marshall D., Martin R. R., Sun X.-F., Rosin P. L.: Registration of 3d point clouds and meshes: A survey from rigid to nonrigid. TVCG 19, 7 (2013), 1199–1217.
- [THW*14] Tevs A., Huang Q., Wand M., Seidel H.-P., Guibas L. J.: Relating shapes via geometric symmetries and regularities. ACM Transactions on Graphics 33, 4 (2014), 119:1–119:12.
- [VKZHCO11] Van Kaick O., Zhang H., Hamarneh G., Cohen-Or D.: A survey on shape correspondence. Computer Graphics Forum 30 (2011), 1681–1707.