Get in and get out: Remodeling of the cellular actin cytoskeleton upon HIV-1 infection
Thomas Serrano
Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, Paris, France
Search for more papers by this authorCorresponding Author
Stéphane Frémont
Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, Paris, France
Correspondence
Stéphane Frémont and Arnaud Echard, Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Arnaud Echard
Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, Paris, France
Correspondence
Stéphane Frémont and Arnaud Echard, Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France.
Email: [email protected] and [email protected]
Search for more papers by this authorThomas Serrano
Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, Paris, France
Search for more papers by this authorCorresponding Author
Stéphane Frémont
Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, Paris, France
Correspondence
Stéphane Frémont and Arnaud Echard, Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Arnaud Echard
Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, Paris, France
Correspondence
Stéphane Frémont and Arnaud Echard, Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France.
Email: [email protected] and [email protected]
Search for more papers by this authorStéphane Frémont and Arnaud Echard contributed equally to this work.
Abstract
The human immunodeficiency virus type 1 (HIV-1) is an intracellular pathogen whose replication cycle strictly depends on the host cell molecular machinery. HIV-1 crosses twice the plasma membrane, to get in and to get out of the cell. Therefore, the first and the last line of intracellular component encountered by the virus is the cortical actin network. Here, we review the role of actin and actin-related proteins in HIV-1 entry, assembly, budding, and release. We first highlight the mechanisms controlling actin polymerization at the entry site that promote the clustering of HIV-1 receptors, a crucial step for the virus to fuse with the plasma membrane. Then, we describe how actin is transiently depolymerized locally to allow the capsid to cross the actin cortex, before migrating towards the nucleus. Finally, we review the role of several actin-binding proteins in actin remodeling events required for membrane deformation and curvature at the viral assembly site as well as for virus release. Strikingly, it appears that common actin-regulating pathways are involved in viral entry and exit. However, while the role of actin remodeling during entry is well understood, this is not the case during exit. We discuss remaining challenges regarding the actin-dependent mechanisms involved in HIV-1 entry and exit, and how they could be overcome.
CONFLICT OF INTEREST
None.
Open Research
DATA AVAILABILITY STATEMENTS
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- Abou-Kheir, W., Isaac, B., Yamaguchi, H. & Cox, D. (2008) Membrane targeting of WAVE2 is not sufficient for WAVE2-dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2. Journal of Cell Science, 121(Pt 3), 379–390. https://doi.org/10.1242/jcs.010272
- Aggarwal, A., Iemma, T.L., Shih, I., Newsome, T.P., Mcallery, S., Cunningham, A.L. & Turville, S.G. (2012) Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. Plos Pathogens, 8(6), e1002762. https://doi.org/10.1371/journal.ppat.1002762
- Aggarwal, A., Stella, A.O., Henry, C.C., Narayan, K. & Turville, S.G. (2022) Embedding of HIV Egress within Cortical F-Actin. Pathogens, 11(1), 56. https://doi.org/10.3390/pathogens11010056
- Anand, A.R., Zhao, H., Nagaraja, T., Robinson, L.A. & Ganju, R.K. (2013) N-terminal Slit2 inhibits HIV-1 replication by regulating the actin cytoskeleton. Retrovirology, 10, 2. https://doi.org/10.1186/1742-4690-10-2
- Anokhin, B. & Spearman, P. (2022) Viral and host factors regulating HIV-1 envelope protein trafficking and particle incorporation. Viruses, 14(8), 1729. https://doi.org/10.3390/v14081729
- Audoly, G., Popoff, M.R. & Gluschankof, P. (2005) Involvement of a small GTP binding protein in HIV-1 release. Retrovirology, 2, 48. https://doi.org/10.1186/1742-4690-2-48
- Balabanian, K., Harriague, J., Décrion, C., Lagane, B., Shorte, S., Baleux, F., Virelizier, J.-L., Arenzana-Seisdedos, F. & Chakrabarti, L.A. (2004) CXCR4-tropic HIV-1 envelope glycoprotein functions as a viral chemokine in unstimulated primary CD4+ T lymphocytes. Journal of Immunology, 173(12), 7150–7160. https://doi.org/10.4049/jimmunol.173.12.7150
- Barré-Sinoussi, F., Chermann, J.C., Rey, F., Nugeyre, M.T., Chamaret, S., Gruest, J., Dauguet, C., Axler-Blin, C., Vézinet-Brun, F., Rouzioux, C., Rozenbaum, W. & Montagnier, L. (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science, 220(4599), 868–871. https://doi.org/10.1126/science.6189183
- Barrero-Villar, M., Cabrero, J.R., Gordón-Alonso, Mó, Barroso-González, J., Álvarez-Losada, S., Muñoz-Fernández, M.Á, Sánchez-Madrid, F. & Valenzuela-Fernández, A. (2009) Moesin is required for HIV-1-induced CD4-CXCR4 interaction, F-actin redistribution, membrane fusion and viral infection in lymphocytes. Journal of Cell Science, 122(Pt 1), 103–113. https://doi.org/10.1242/jcs.035873
- Belin, B.J., Goins, L.M. & Mullins, R.D. (2014) Comparative analysis of tools for live cell imaging of actin network architecture. Bioarchitecture, 4(6), 189–202. https://doi.org/10.1080/19490992.2014.1047714
- Berre, S., Gaudin, R., Cunha De Alencar, B., Desdouits, M., Chabaud, M., Naffakh, N., Rabaza-Gairi, M., Gobert, F.-X., Jouve, M. & Benaroch, P. (2013) CD36-specific antibodies block release of HIV-1 from infected primary macrophages and its transmission to T cells. Journal of Experimental Medicine, 210(12), 2523–2538. https://doi.org/10.1084/jem.20130566
- Blumenthal, R., Durell, S. & Viard, M. (2012) HIV entry and envelope glycoprotein-mediated fusion. Journal of Biological Chemistry, 287(49), 40841–40849. https://doi.org/10.1074/jbc.R112.406272
- Booth, A., Marklew, C.J., Ciani, B. & Beales, P.A. (2019) In vitro membrane remodeling by ESCRT is regulated by negative feedback from membrane tension. iScience, 15, 173–184. https://doi.org/10.1016/j.isci.2019.04.021
- Bracq, L., Xie, M., Benichou, S. & Bouchet, J. (2018) Mechanisms for cell-to-cell transmission of HIV-1. Frontiers in Immunology, 9, 260. https://doi.org/10.3389/fimmu.2018.00260
- Cameron, P.U., Saleh, S., Sallmann, G., Solomon, A., Wightman, F., Evans, V.A., Boucher, G., Haddad, E.K., Sekaly, R.-P., Harman, A.N., Anderson, J.L., Jones, K.L., Mak, J., Cunningham, A.L., Jaworowski, A. & Lewin, S.R. (2010) Establishment of HIV-1 latency in resting CD4+ T cells depends on chemokine-induced changes in the actin cytoskeleton. Proceedings of the National Academy of Sciences of the United States, 107(39), 16934–16939. https://doi.org/10.1073/pnas.1002894107
- Carlson, L.-A., De Marco, A., Oberwinkler, H., Habermann, A., Briggs, J.A.G., Kräusslich, H.-G. & Grünewald, K. (2010) Cryo electron tomography of native HIV-1 budding sites. Plos Pathogens, 6(11), e1001173. https://doi.org/10.1371/journal.ppat.1001173
- Carnes, S.K., Zhou, J. & Aiken, C. (2018) HIV-1 engages a dynein-dynactin-BICD2 complex for infection and transport to the nucleus. Journal of Virology, 92(20), e00358-18. https://doi.org/10.1128/JVI.00358-18
- Carter, G.C., Bernstone, L., Baskaran, D. & James, W. (2011) HIV-1 infects macrophages by exploiting an endocytic route dependent on dynamin, Rac1 and Pak1. Virology, 409(2), 234–250. https://doi.org/10.1016/j.virol.2010.10.018
- Chan, E.Y., Qian, W.-J., Diamond, D.L., Liu, T., Gritsenko, M.A., Monroe, M.E., Camp, D.G., Smith, R.D. & Katze, M.G. (2007) Quantitative analysis of human immunodeficiency virus type 1-infected CD4+ cell proteome: dysregulated cell cycle progression and nuclear transport coincide with robust virus production. Journal of Virology, 81(14), 7571–7583. https://doi.org/10.1128/JVI.00288-07
- Chen, B. (2019) Molecular mechanism of HIV-1 entry. Trends in Microbiology, 27(10), 878–891. https://doi.org/10.1016/j.tim.2019.06.002
- Chertova, E., Chertov, O., Coren, L.V., Roser, J.D., Trubey, C.M., Bess, J.W., Sowder, R.C., Barsov, E., Hood, B.L., Fisher, R.J., Nagashima, K., Conrads, T.P., Veenstra, T.D., Lifson, J.D. & Ott, D.E. (2006) Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. Journal of Virology, 80(18), 9039–9052.
- Chugh, P. & Paluch, E.K. (2018) The actin cortex at a glance. Journal of Cell Science, 131(14), jcs186254. https://doi.org/10.1242/jcs.186254
- Cicala, C., Arthos, J., Selig, S.M., Dennis, G., Hosack, D.A., Van Ryk, D., Spangler, M.L., Steenbeke, T.D., Khazanie, P., Gupta, N., Yang, J., Daucher, M., Lempicki, R.A. & Fauci, A.S. (2002) HIV envelope induces a cascade of cell signals in non-proliferating target cells that favor virus replication. Proceedings of the National Academy of Sciences of the United States, 99(14), 9380–9385. https://doi.org/10.1073/pnas.142287999
- Cooper, J., Liu, L., Woodruff, E.A., Taylor, H.E., Goodwin, J.S, D'aquila, R.T., Spearman, P., Hildreth, J.E.K. & Dong, X. (2011) Filamin A protein interacts with human immunodeficiency virus type 1 Gag protein and contributes to productive particle assembly. Journal of Biological Chemistry, 286(32), 28498–28510. https://doi.org/10.1074/jbc.M111.239053
- Delaney, M.K., Malikov, V., Chai, Q., Zhao, G. & Naghavi, M.H. (2017) Distinct functions of diaphanous-related formins regulate HIV-1 uncoating and transport. Proceedings of the National Academy of Sciences, 114(33), E6932-E6941. https://doi.org/10.1073/pnas.1700247114
- Delorme-Axford, E. & Coyne, C.B. (2011) The actin cytoskeleton as a barrier to virus infection of polarized epithelial cells. Viruses, 3(12), 2462–2477. https://doi.org/10.3390/v3122462
- Dharan, A., Opp, S., Abdel-Rahim, O., Keceli, S.K., Imam, S., Diaz-Griffero, F. & Campbell, E.M. (2017) Bicaudal D2 facilitates the cytoplasmic trafficking and nuclear import of HIV-1 genomes during infection. Proceedings of the National Academy of Sciences, 114(50), E10707–E10716. https://doi.org/10.1073/pnas.1712033114
- Dotson, D., Woodruff, E.A., Villalta, F. & Dong, X. (2016) Filamin A is involved in HIV-1 Vpu-mediated evasion of host restriction by modulating tetherin expression. Journal of Biological Chemistry, 291(8), 4236–4246. https://doi.org/10.1074/jbc.M115.708123
- Farrants, H., Tarnawski, M., Müller, T.G., Otsuka, S., Hiblot, J., Koch, B., Kueblbeck, M., Kräusslich, H.-G., Ellenberg, J. & Johnsson, K. (2020) Chemogenetic control of nanobodies. Nature Methods, 17(3), 279–282. https://doi.org/10.1038/s41592-020-0746-7
- Fehon, R.G., Mcclatchey, A.I. & Bretscher, A. (2010) Organizing the cell cortex: the role of ERM proteins. Nature Reviews Molecular Cell Biology, 11(4), 276–287. doi:10.1038/nrm2866
- García-Expósito, L., Ziglio, S., Barroso-González, J., De Armas-Rillo, L., Valera, M.-S., Zipeto, D., Machado, J.-D. & Valenzuela-Fernández, A. (2013) Gelsolin activity controls efficient early HIV-1 infection. Retrovirology, 10, 39. https://doi.org/10.1186/1742-4690-10-39
- Gaudin, R., Berre, S., Cunha De Alencar, B., Decalf, J., Schindler, M., Gobert, F.-X., Jouve, M. & Benaroch, P. (2013) Dynamics of HIV-containing compartments in macrophages reveal sequestration of virions and transient surface connections. PLoS ONE, 8(7), e69450. https://doi.org/10.1371/journal.pone.0069450
- Gautreau, A.M., Fregoso, F.E., Simanov, G. & Dominguez, R. (2022) Nucleation, stabilization, and disassembly of branched actin networks. Trends in Cell Biology, 32(5), 421–432. https://doi.org/10.1016/j.tcb.2021.10.006
- Gladnikoff, M., Shimoni, E., Gov, N.S. & Rousso, I. (2009) Retroviral assembly and budding occur through an actin-driven mechanism. Biophysical Journal, 97(9), 2419–2428. https://doi.org/10.1016/j.bpj.2009.08.016
- Gordón-Alonso, M., Rocha-Perugini, V., Álvarez, S., Moreno-Gonzalo, O., Ursa, Á., López-Martín, S., Izquierdo-Useros, N., Martínez-Picado, J., Muñoz-Fernández, M.Á., Yáñez-Mó, M. & Sánchez-Madrid, F. (2012) The PDZ-adaptor protein syntenin-1 regulates HIV-1 entry. Molecular Biology of the Cell, 23(12), 2253–2263. https://doi.org/10.1091/mbc.E11-12-1003
- Gordón-Alonso, M., Rocha-Perugini, V., Álvarez, S., Ursa, Á., Izquierdo-Useros, N., Martinez-Picado, J., Muñoz-Fernández, M.A. & Sánchez-Madrid, F. (2013) Actin-binding protein drebrin regulates HIV-1-triggered actin polymerization and viral infection. Journal of Biological Chemistry, 288(39), 28382–28397. https://doi.org/10.1074/jbc.M113.494906
- Gray, C.M., Hong, H.A., Young, K., Lewis, D.A., Fallows, D., Manca, C. & Kaplan, G. (2013) Plasma interferon-gamma-inducible protein 10 can be used to predict viral load in HIV-1-infected individuals. Journal of Acquired Immune Deficiency Syndromes, 63(3), e115-e116. https://doi.org/10.1097/QAI.0b013e3182930ea8
- Graziano, F., Elia, C., Laudanna, C., Poli, G. & Alfano, M. (2011) Urokinase plasminogen activator inhibits HIV virion release from macrophage-differentiated chronically infected cells via activation of RhoA and PKCepsilon. PLoS ONE, 6(8), e23674. https://doi.org/10.1371/journal.pone.0023674
- Harmon, B., Campbell, N. & Ratner, L. (2010) Role of Abl kinase and the Wave2 signaling complex in HIV-1 entry at a post-hemifusion step. Plos Pathogens, 6(6), e1000956. https://doi.org/10.1371/journal.ppat.1000956
- Harmon, B. & Ratner, L. (2008) Induction of the Galpha(q) signaling cascade by the human immunodeficiency virus envelope is required for virus entry. Journal of Virology, 82(18), 9191–9205. https://doi.org/10.1128/JVI.00424-08
- Heller, B., Adu-Gyamfi, E., Smith-Kinnaman, W., Babbey, C., Vora, M., Xue, Y., Bittman, R., Stahelin, R.V. & Wells, C.D. (2010) Amot recognizes a juxtanuclear endocytic recycling compartment via a novel lipid binding domain. Journal of Biological Chemistry, 285(16), 12308-12320. https://doi.org/10.1074/jbc.M109.096230
- Ibarrondo, F.J, Choi, R., Geng, Y.-Z., Canon, J., Rey, O., Baldwin, G.C. & Krogstad, P. (2001) HIV type 1 Gag and nucleocapsid proteins: cytoskeletal localization and effects on cell motility. Aids Research and Human Retroviruses, 17(16), 1489-1500. https://doi.org/10.1089/08892220152644197
- Inamdar, K., Tsai, F.-C., Dibsy, R., De Poret, A., Manzi, J., Merida, P., Muller, R., Lappalainen, P., Roingeard, P., Mak, J., Bassereau, P., Favard, C. & Muriaux, D. (2021) Full assembly of HIV-1 particles requires assistance of the membrane curvature factor IRSp53. Elife, 10, e67321. https://doi.org/10.7554/eLife.67321
- Angert, I.K.S.R., Mansky, L.M. & Mueller, J.D. (2021) Partitioning of ribonucleoprotein complexes from the cellular actin cortex. BioRxiv, https://doi.org/10.1101/2021.10.01.462753
10.1101/2021.10.01.462753 Google Scholar
- Iyengar, S., Hildreth, J.E.K. & Schwartz, D.H. (1998) Actin-dependent receptor colocalization required for human immunodeficiency virus entry into host cells. Journal of Virology, 72(6), 5251-5255. https://doi.org/10.1128/JVI.72.6.5251-5255.1998
- Jakobsdottir, G.M, Iliopoulou, M., Nolan, R., Alvarez, L., Compton, A.A. & Padilla-Parra, S. (2017) On the whereabouts of HIV-1 cellular entry and its fusion ports. Trends in Molecular Medicine, 23(10), 932-944. https://doi.org/10.1016/j.molmed.2017.08.005
- Jiao, Y., Zhang, T., Wang, R., Zhang, H., Huang, X., Yin, J., Zhang, L., Xu, X. & Wu, H. (2012) Plasma IP-10 is associated with rapid disease progression in early HIV-1 infection. Viral Immunology, 25(4), 333-337. https://doi.org/10.1089/vim.2012.0011
- Jiménez-Baranda, S., Gómez-Moutón, C., Rojas, A., Martínez-Prats, L., Mira, E., Ana Lacalle, R., Valencia, A., Dimitrov, D.S., Viola, A., Delgado, R., Martínez-A, C. & Mañes, S. (2007) Filamin-A regulates actin-dependent clustering of HIV receptors. Nature Cell Biology, 9(7), 838-846. https://doi.org/10.1038/ncb1610
- Jolly, C., Mitar, I. & Sattentau, Q.J. (2007) Requirement for an intact T-cell actin and tubulin cytoskeleton for efficient assembly and spread of human immunodeficiency virus type 1. Journal of Virology, 81(11), 5547-5560. https://doi.org/10.1128/JVI.01469-06
- Kamiyama, H., Izumida, M., Umemura, Y., Hayashi, H., Matsuyama, T. & Kubo, Y. (2018) Role of ezrin phosphorylation in HIV-1 replication. Frontiers in Microbiology, 9, 1912. https://doi.org/10.3389/fmicb.2018.01912
- Kozlov, M.M. & Chernomordik, L.V. (2015) Membrane tension and membrane fusion. Current Opinion in Structural Biology, 33, 61-67. https://doi.org/10.1016/j.sbi.2015.07.010
- Krugmann, S., Jordens, I., Gevaert, K., Driessens, M., Vandekerckhove, J. & Hall, A. (2001) Cdc42 induces filopodia by promoting the formation of an IRSp53: Mena complex. Current Biology, 11(21), 1645-1655. https://doi.org/10.1016/s0960-9822(01)00506-1
- Ladinsky, M.S., Khamaikawin, W., Jung, Y., Lin, S., Lam, J., An, D.S., Bjorkman, P.J. & Kieffer, C. (2019) Mechanisms of virus dissemination in bone marrow of HIV-1-infected humanized BLT mice. Elife, 8, e46916. https://doi.org/10.7554/eLife.46916
- Ladinsky, M.S., Kieffer, C., Olson, G., Deruaz, M., Vrbanac, V., Tager, A.M., Kwon, D.S. & Bjorkman, P.J. (2014) Electron tomography of HIV-1 infection in gut-associated lymphoid tissue. Plos Pathogens, 10(1), e1003899. https://doi.org/10.1371/journal.ppat.1003899
- Lafaurie-Janvore, J., Maiuri, P., Wang, I., Pinot, M., Manneville, J.-B., Betz, T., Balland, M. & Piel, M. (2013) ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge. Science, 339(6127), 1625-1629. https://doi.org/10.1126/science.1233866
- Lee, S., Chung, Y.-S., Yoon, C.-H., Shin, Y., Kim, S., Choi, B.-S. & Kim, S.S. (2015) Interferon-inducible protein 10 (IP-10) is associated with viremia of early HIV-1 infection in Korean patients. Journal of Medical Virology, 87(5), 782-789. https://doi.org/10.1002/jmv.24026
- Lehmann, M., Nikolic, D.S. & Piguet, V. (2011) How HIV-1 takes advantage of the cytoskeleton during replication and cell-to-cell transmission. Viruses, 3(9), 1757-1776. https://doi.org/10.3390/v3091757
- Lerner, G., Weaver, N., Anokhin, B. & Spearman, P. (2022) Advances in HIV-1 assembly. Viruses, 14(3), 478. https://doi.org/10.3390/v14030478
- Li, Q., Li, W., Yin, W., Guo, J., Zhang, Z.-P., Zeng, D., Zhang, X., Wu, Y., Zhang, X.-E. & Cui, Z. (2017) Single-particle tracking of human immunodeficiency virus type 1 productive entry into human primary macrophages. ACS Nano, 11(4), 3890-3903. https://doi.org/10.1021/acsnano.7b00275
- Li, W., Liu, J., Liu, Y., Li, Q., Yin, W., Wanderi, K.K., Zhang, X., Zhang, Z., Zhang, X.-E. & Cui, Z. (2021) HIV-1 uses dynamic podosomes for entry into macrophages. Journal of Virology, 95(10), e02480-20 https://doi.org/10.1128/JVI.02480-20
- Linde, M.E., Colquhoun, D.R., Ubaida Mohien, C., Kole, T., Aquino, V., Cotter, R., Edwards, N., Hildreth, J.E.K. & Graham, D.R. (2013) The conserved set of host proteins incorporated into HIV-1 virions suggests a common egress pathway in multiple cell types. Journal of Proteome Research, 12(5), 2045-2054. https://doi.org/10.1021/pr300918r
- Lingappa, J.R., Reed, J.C., Tanaka, M., Chutiraka, K. & Robinson, B.A. (2014) How HIV-1 Gag assembles in cells: putting together pieces of the puzzle. Virus Research, 193, 89-107. https://doi.org/10.1016/j.virusres.2014.07.001
- Liu, B., Dai, R., Tian, C.-J., Dawson, L., Gorelick, R. & Yu, X.-F. (1999) Interaction of the human immunodeficiency virus type 1 nucleocapsid with actin. Journal of Virology, 73(4), 2901-2908. https://doi.org/10.1128/JVI.73.4.2901-2908.1999
- Liu, Y., Belkina, N.V. & Shaw, S. (2009) HIV infection of T cells: actin-in and actin-out. Science signaling, 2(66), pe23. https://doi.org/10.1126/scisignal.266pe23
- Lucera, M.B., Fleissner, Z., Tabler, C.O., Schlatzer, D.M., Troyer, Z. & Tilton, J.C. (2017) HIV signaling through CD4 and CCR5 activates Rho family GTPases that are required for optimal infection of primary CD4+ T cells. Retrovirology, 14(1), 4. https://doi.org/10.1186/s12977-017-0328-7
- Malikov, V., Da Silva, E.S., Jovasevic, V., Bennett, G., De Souza Aranha Vieira, D.A., Schulte, B., Diaz-Griffero, F., Walsh, D. & Naghavi, M.H. (2015) HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus. Nature Communications, 6, 6660. https://doi.org/10.1038/ncomms7660
- Mcmichael, A.J., Borrow, P., Tomaras, G.D., Goonetilleke, N. & Haynes, B.F. (2010) The immune response during acute HIV-1 infection: clues for vaccine development. Nature Reviews Immunology, 10(1), 11-23. https://doi.org/10.1038/nri2674
- Melikyan, G.B. (2014) HIV entry: a game of hide-and-fuse? Current opinion in virology, 4, 1-7. https://doi.org/10.1016/j.coviro.2013.09.004
- Meng, B. & Lever, A.M. (2013) Wrapping up the bad news: HIV assembly and release. Retrovirology, 10, 5. https://doi.org/10.1186/1742-4690-10-5
- Mercenne, G., Alam, S.L., Arii, J., Lalonde, M.S. & Sundquist, W.I. (2015) Angiomotin functions in HIV-1 assembly and budding. Elife, 4, e03778. https://doi.org/10.7554/eLife.03778
- Mercier, V., Larios, J., Molinard, G., Goujon, A., Matile, S., Gruenberg, J. & Roux, A. (2020) Endosomal membrane tension regulates ESCRT-III-dependent intra-lumenal vesicle formation. Nature Cell Biology, 22(8), 947-959. https://doi.org/10.1038/s41556-020-0546-4
- Mikati, M.A., Grintsevich, E.E. & Reisler, E. (2013) Drebrin-induced stabilization of actin filaments. Journal of Biological Chemistry, 288(27), 19926-19938. https://doi.org/10.1074/jbc.M113.472647
- Mim, C. & Unger, V.M. (2012) Membrane curvature and its generation by BAR proteins. [BAR review]. Trends in Biochemical Sciences, 37(12), 526-533. https://doi.org/10.1016/j.tibs.2012.09.001
- Mlcochova, P., Pelchen-Matthews, A. & Marsh, M. (2013) Organization and regulation of intracellular plasma membrane-connected HIV-1 assembly compartments in macrophages. BMC Biology, 11, 89. https://doi.org/10.1186/1741-7007-11-89
- Muema, D.M., Akilimali, N.A., Ndumnego, O.C., Rasehlo, S.S., Durgiah, R., Ojwach, D.B.A., Ismail, N., Dong, M., Moodley, A., Dong, K.L., Ndhlovu, Z.M., Mabuka, J.M., Walker, B.D., Mann, J.K. & Ndung'u, T. (2020) Association between the cytokine storm, immune cell dynamics, and viral replicative capacity in hyperacute HIV infection. BMC Medicine [Electronic Resource], 18(1), 81. https://doi.org/10.1186/s12916-020-01529-6
- Naghavi, M.H., Valente, S., Hatziioannou, T., De Los Santos, K., Wen, Y., Mott, C., Gundersen, G.G. & Goff, S.P. (2007) Moesin regulates stable microtubule formation and limits retroviral infection in cultured cells. Embo Journal, 26(1), 41-52. https://doi.org/10.1038/sj.emboj.7601475
- Neil, S.J.D., Zang, T. & Bieniasz, P.D. (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature, 451(7177), 425-430. https://doi.org/10.1038/nature06553
- Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. (2009) An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nature Methods, 6(12), 917-922. https://doi.org/10.1038/nmeth.1401
- Nishita, M., Aizawa, H. & Mizuno, K. (2002) Stromal cell-derived factor 1alpha activates LIM kinase 1 and induces cofilin phosphorylation for T-cell chemotaxis. Molecular and Cellular Biology, 22(3), 774-783. https://doi.org/10.1128/MCB.22.3.774-783.2002
- Nobile, C., Rudnicka, D., Hasan, M., Aulner, N., Porrot, F., Machu, C., Renaud, O., Prévost, M.-C., Hivroz, C., Schwartz, O. & Sol-Foulon, N. (2010) HIV-1 Nef inhibits ruffles, induces filopodia, and modulates migration of infected lymphocytes. Journal of Virology, 84(5), 2282-2293. https://doi.org/10.1128/JVI.02230-09
- Ospina Stella, A., & Turville, S. (2018) All-round manipulation of the actin cytoskeleton by HIV. Viruses, 10(2), 63. https://doi.org/10.3390/v10020063
- Ott, D.E., Coren, L.V., Johnson, D.G., Kane, B.P., Sowder, R.C., Kim, Y.D., Fisher, R.J., Zhou, X.Z., Lu, K.P. & Henderson, L.E. (2000) Actin-binding cellular proteins inside human immunodeficiency virus type 1. Virology, 266(1), 42-51. https://doi.org/10.1006/viro.1999.0075
- Ott, D.E., Coren, L.V., Kane, B.P., Busch, L.K., Johnson, D.G., Sowder, R.C., Chertova, E.N., Arthur, L.O. & Henderson, L.E. (1996) Cytoskeletal proteins inside human immunodeficiency virus type 1 virions. Journal of Virology, 70(11), 7734-7743.
- Paoletti, A., Allouch, A., Caillet, M., Saïdi, H., Subra, F., Nardacci, R., Wu, Q., Muradova, Z., Voisin, L., Raza, S.Q., Law, F., Thoreau, M., Dakhli, H., Delelis, O., Poirier-Beaudouin, B., Dereuddre-Bosquet, N., Le Grand, R., Lambotte, O., Saez-Cirion, A., Pancino, G., Ojcius, D.M., Solary, E., Deutsch, E., Piacentini, M., Gougeon, M.-L., Kroemer, G. & Perfettini, J.-L. (2019) HIV-1 envelope overcomes NLRP3-mediated inhibition of F-Actin polymerization for viral entry. Cell Reports, 28(13), 3381-3394.e7. https://doi.org/10.1016/j.celrep.2019.02.095
- Pelchen-Matthews, A., Giese, S., Mlčochová, P., Turner, J. & Marsh, M. (2012) beta2 integrin adhesion complexes maintain the integrity of HIV-1 assembly compartments in primary macrophages. Traffic (Copenhagen, Denmark), 13(2), 273-291. https://doi.org/10.1111/j.1600-0854.2011.01306.x
- Ploquin, M.J., Madec, Y., Casrouge, A., Huot, N., Passaes, C., Lécuroux, C., Essat, A., Boufassa, F., Jacquelin, B., Jochems, S.P., Petitjean, G., Angin, M., Gärtner, K., Garcia-Tellez, T., Noël, N., Booiman, T., Boeser-Nunnink, B.D., Roques, P., Saez-Cirion, A., Vaslin, B., Dereudre-Bosquet, N., Barré-Sinoussi, F., Ghislain, M., Rouzioux, C., Lambotte, O., Albert, M.L., Goujard, C., Kootstra, N., Meyer, L. & Müller-Trutwin, M.C. (2016) Elevated basal pre-infection CXCL10 in plasma and in the small intestine after infection are associated with more rapid HIV/SIV disease onset. Plos Pathogens, 12(8), e1005774. https://doi.org/10.1371/journal.ppat.1005774
- Pollard, T.D. (2016) Actin and actin-binding proteins. Cold Spring Harbor perspectives in biology, 8(8), a018226. https://doi.org/10.1101/cshperspect.a018226
- Pontow, S., Harmon, B., Campbell, N. & Ratner, L. (2007) Antiviral activity of a Rac GEF inhibitor characterized with a sensitive HIV/SIV fusion assay. Virology, 368(1), 1-6. https://doi.org/10.1016/j.virol.2007.06.022
- Pontow, S.E., Heyden, N.V, Wei, S. & Ratner, L. (2004) Actin cytoskeletal reorganizations and coreceptor-mediated activation of rac during human immunodeficiency virus-induced cell fusion. Journal of Virology, 78(13), 7138-7147. https://doi.org/10.1128/JVI.78.13.7138-7147.2004
- Rahman, S.A., Koch, P., Weichsel, J., Godinez, W.J., Schwarz, U., Rohr, K., Lamb, D.C., Kräusslich, H.-G. & Müller, B. (2014) Investigating the role of F-actin in human immunodeficiency virus assembly by live-cell microscopy. Journal of Virology, 88(14), 7904-7914. https://doi.org/10.1128/JVI.00431-14
- Readinger, J.A., Schiralli, G.M., Jiang, J.-K., Thomas, C.J., August, A., Henderson, A.J. & Schwartzberg, P.L. (2008) Selective targeting of ITK blocks multiple steps of HIV replication. Proceedings of the National Academy of Sciences, 105(18), 6684-6689. https://doi.org/10.1073/pnas.0709659105
- Rey, O., Canon, J. & Krogstad, P. (1996) HIV-1 Gag protein associates with F-actin present in microfilaments. Virology, 220(2), 530-534. https://doi.org/10.1006/viro.1996.0343
- Ritchie, C., Cylinder, I., Platt, E.J. & Barklis, E. (2015) Analysis of HIV-1 Gag protein interactions via biotin ligase tagging. Journal of Virology, 89(7), 3988-4001. https://doi.org/10.1128/JVI.03584-14
- Rocha-Perugini, V., Gordon-Alonso, M. & Sánchez-Madrid, F. (2014) PIP2: choreographer of actin-adaptor proteins in the HIV-1 dance. Trends in Microbiology, 22(7), 379-388. https://doi.org/10.1016/j.tim.2014.03.009
- Rodrigues, V., Taheraly, S., Maurin, M., San-Roman, M., Granier, E., Hanouna, A. & Benaroch, P. (2022) Release of HIV-1 particles from the viral compartment in macrophages is promoted by an associated cytoskeleton and driven by mechanical constraints. Journal of Cell Science, 135(19), jcs260511. https://doi.org/10.1242/jsc.260511
- Rose, K.M., Hirsch, V.M. & Bouamr, F. (2020) Budding of a retrovirus: some assemblies required. Viruses, 12(10), 1188. https://doi.org/10.3390/v12101188
- Sabo, Y., De Los Santos, K. & Goff, S.P. (2020) IQGAP1 negatively regulates HIV-1 gag trafficking and virion production. Cell reports, 30(12), 4065-4081.e4. https://doi.org/10.1016/j.celrep.2020.03.002
- Sala-Valdés, M., Gordón-Alonso, M., Tejera, E., Ibáñez, A., Cabrero, J.R, Ursa, A., Mittelbrunn, M., Lozano, F., Sánchez-Madrid, F. & Yáñez-Mó, M. (2012) Association of syntenin-1 with M-RIP polarizes Rac-1 activation during chemotaxis and immune interactions. Journal of Cell Science, 125(Pt 5), 1235-1246. https://doi.org/10.1242/jcs.094912
- Sasaki, H., Nakamura, M., Ohno, T., Matsuda, Y., Yuda, Y. & Nonomura, Y. (1995) Myosin-actin interaction plays an important role in human immunodeficiency virus type 1 release from host cells. Proceedings of the National Academy of Sciences, 92(6), 2026-2030. https://doi.org/10.1073/pnas.92.6.2026
- Sasaki, H., Ozaki, H., Karaki, H. & Nonomura, Y. (2004) Actin filaments play an essential role for transport of nascent HIV-1 proteins in host cells. Biochemical and Biophysical Research Communications, 316(2), 588-593. https://doi.org/10.1016/j.bbrc.2004.02.088
- Séror, C., Melki, M.-T., Subra, F., Raza, S.Q., Bras, M., Saïdi, H., Nardacci, R., Voisin, L., Paoletti, A., Law, F., Martins, I., Amendola, A., Abdul-Sater, A.A., Ciccosanti, F., Delelis, O., Niedergang, F., Thierry, S., Said-Sadier, N., Lamaze, C., Métivier, D., Estaquier, J., Fimia, G.M., Falasca, L., Casetti, R., Modjtahedi, N., Kanellopoulos, J., Mouscadet, J.-F., Ojcius, D.M., Piacentini, M., Gougeon, M.-L., Kroemer, G. & Perfettini, J.-L. (2011) Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection. Journal of Experimental Medicine, 208(9), 1823-1834. https://doi.org/10.1084/jem.20101805
- Shutova, M.S. & Svitkina, T.M. (2018) Mammalian nonmuscle myosin II comes in three flavors. Biochemical and Biophysical Research Communications, 506(2), 394-402. https://doi.org/10.1016/j.bbrc.2018.03.103
- Spear, M., Guo, J., Turner, A., Yu, D., Wang, W., Meltzer, B., He, S., Hu, X., Shang, H., Kuhn, J. & Wu, Y. (2014) HIV-1 triggers WAVE2 phosphorylation in primary CD4 T cells and macrophages, mediating Arp2/3-dependent nuclear migration. Journal of Biological Chemistry, 289(10), 6949-6959. https://doi.org/10.1074/jbc.M113.492132
- Spear, M., Guo, J. & Wu, Y. (2012) The trinity of the cortical actin in the initiation of HIV-1 infection. Retrovirology, 9, 45. https://doi.org/10.1186/1742-4690-9-45
- Spear, M., Guo, J. & Wu, Y. (2013) Novel anti-HIV therapeutics targeting chemokine receptors and actin regulatory pathways. Immunological Reviews, 256(1), 300-312. https://doi.org/10.1111/imr.12106
- Spear, M. & Wu, Y. (2014) Viral exploitation of actin: force-generation and scaffolding functions in viral infection. Virologica Sinica, 29(3), 139-147. https://doi.org/10.1007/s12250-014-3476-0
- Stauffer, S., Rahman, S.A., De Marco, A., Carlson, L.-A., Glass, B., Oberwinkler, H., Herold, N., Briggs, J.A.G., Müller, B., Grünewald, K. & Kräusslich, H.-G. (2014) The nucleocapsid domain of Gag is dispensable for actin incorporation into HIV-1 and for association of viral budding sites with cortical F-actin. Journal of Virology, 88(14), 7893-7903. https://doi.org/10.1128/JVI.00428-14
- Stolp, B. & Fackler, O.T. (2011) How HIV takes advantage of the cytoskeleton in entry and replication. Viruses, 3(4), 293-311. https://doi.org/10.3390/v3040293
- Sundquist, W.I. & Krausslich, H.-G. (2012) HIV-1 assembly, budding, and maturation. Cold Spring Harbor perspectives in medicine, 2(7), a006924. https://doi.org/10.1101/cshperspect.a006924
- Swaine, T. & Dittmar, M. (2015) CDC42 use in viral cell entry processes by RNA viruses. Viruses, 7(12), 6526-6536. https://doi.org/10.3390/v7122955
- Taylor, M.P., Koyuncu, O.O. & Enquist, L.W. (2011) Subversion of the actin cytoskeleton during viral infection. Nature Reviews Microbiology, 9(6), 427-439. https://doi.org/10.1038/nrmicro2574
- Thomas, A., Mariani-Floderer, C., López-Huertas, M.R., Gros, N., Hamard-Péron, E., Favard, C., Ohlmann, T., Alcamí, J. & Muriaux, D. (2015) Involvement of the Rac1-IRSp53-Wave2-Arp2/3 signaling pathway in HIV-1 gag particle release in CD4 T cells. Journal of Virology, 89(16), 8162-8181. https://doi.org/10.1128/JVI.00469-15
- Vorster, P.J., Guo, J., Yoder, A., Wang, W., Zheng, Y., Xu, X., Yu, D., Spear, M. & Wu, Y. (2011) LIM kinase 1 modulates cortical actin and CXCR4 cycling and is activated by HIV-1 to initiate viral infection. Journal of Biological Chemistry, 286(14), 12554-12564. https://doi.org/10.1074/jbc.M110.182238
- Walsh, D. & Naghavi, M.H. (2019) Exploitation of cytoskeletal networks during early viral infection. Trends in Microbiology, 27(1), 39-50. https://doi.org/10.1016/j.tim.2018.06.008
- Wang, Z., Yin, X., Ma, M., Ge, H., Lang, B., Sun, H., He, S., Fu, Y., Sun, Y., Yu, X., Zhang, Z., Cui, H., Han, X., Xu, J., Ding, H., Chu, Z., Shang, H., Wu, Y. & Jiang, Y. (2021). IP-10 promoteslatent HIV infection in resting memory CD4(+) T Cells via LIMK-cofilin pathway. Frontiers in Immunology, 12, 656663. https://doi.org/10.3389/fimmu.2021.656663
- Wen, X., Ding, L., Hunter, E. & Spearman, P. (2014) An siRNA screen of membrane trafficking genes highlights pathways common to HIV-1 and M-PMV virus assembly and release. PLoS ONE, 9(9), e106151. https://doi.org/10.1371/journal.pone.0106151
- Wen, X., Ding, L., Wang, J.-J., Qi, M., Hammonds, J., Chu, H., Chen, X., Hunter, E. & Spearman, P. (2014) ROCK1 and LIM kinase modulate retrovirus particle release and cell-cell transmission events. Journal of Virology, 88(12), 6906-6921. https://doi.org/10.1128/JVI.00023-14
- Wilen, C.B., Tilton, J.C. & Doms, R.W. (2012a) HIV: cell binding and entry. Cold Spring Harbor perspectives in medicine, 2(8), a006866-a006866. https://doi.org/10.1101/cshperspect.a006866
- Wilen, C.B., Tilton, J.C. & Doms, R.W. (2012b) Molecular mechanisms of HIV entry. Advances in Experimental Medicine and Biology, 726, 223-242. https://doi.org/10.1007/978-1-4614-0980-9_10
- Wilk, T., Gowen, B. & Fuller, S.D. (1999) Actin associates with the nucleocapsid domain of the human immunodeficiency virus Gag polyprotein. Journal of Virology, 73(3), 1931-1940. https://doi.org/10.1128/JVI.73.3.1931-1940.1999
- Wioland, H., Guichard, B., Senju, Y., Myram, S., Lappalainen, P., Jégou, A. & Romet-Lemonne, G. (2017) ADF/cofilin accelerates actin dynamics by severing filaments and promoting their depolymerization at both ends. Current Biology, 27(13), 1956-1967.e7. https://doi.org/10.1016/j.cub.2017.05.048
- Wioland, H., Jegou, A. & Romet-Lemonne, G. (2019) Torsional stress generated by ADF/cofilin on cross-linked actin filaments boosts their severing. Proceedings of the National Academy of Sciences of the United States, 116(7), 2595-2602. https://doi.org/10.1073/pnas.1812053116
- Wong, K., Ren, X.-R., Huang, Y.-Z., Xie, Y., Liu, G., Saito, H., Tang, H., Wen, L., Brady-Kalnay, S.M., Mei, L., Wu, J.Y., Xiong, W.-C. & Rao, Y. (2001) Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell, 107(2), 209-221. https://doi.org/10.1016/s0092-8674(01)00530-x
- Woollard, S.M., Li, H., Singh, S., Yu, F. & Kanmogne, G.D. (2014) HIV-1 induces cytoskeletal alterations and Rac1 activation during monocyte-blood-brain barrier interactions: modulatory role of CCR5. Retrovirology, 11, 20. https://doi.org/10.1186/1742-4690-11-20
- Yandrapally, S., Mohareer, K., Arekuti, G., Vadankula, G.R. & Banerjee, S. (2021) HIV co-receptor-tropism: cellular and molecular events behind the enigmatic co-receptor switching. Critical Reviews in Microbiology, 47(4), 499-516. https://doi.org/10.1080/1040841X.2021.1902941
- Yi, F., Guo, J., Dabbagh, D., Spear, M., He, S., Kehn-Hall, K., Fontenot, J., Yin, Y., Bibian, M., Park, C.M., Zheng, K., Park, H.J., Soloveva, V., Gharaibeh, D., Retterer, C., Zamani, R., Pitt, M.L., Naughton, J., Jiang, Y., Shang, H., Hakami, R.M., Ling, B., Young, J.A.T., Bavari, S., Xu, X., Feng, Y. & Wu, Y. (2017) Discovery of novel small-molecule inhibitors of LIM domain kinase for inhibiting HIV-1. Journal of Virology, 91(13), e02418-16. https://doi.org/10.1128/JVI.02418-16
- Yin, W., Li, W., Li, Q., Liu, Y., Liu, J., Ren, M., Ma, Y., Zhang, Z., Zhang, X., Wu, Y., Jiang, S., Zhang, X.-E. & Cui, Z. (2020) Real-time imaging of individual virion-triggered cortical actin dynamics for human immunodeficiency virus entry into resting CD4 T cells. Nanoscale, 12(1), 115-129. https://doi.org/10.1039/c9nr07359k
- Yoder, A., Yu, D., Dong, L., Iyer, S.R., Xu, X., Kelly, J., Liu, J., Wang, W., Vorster, P.J., Agulto, L., Stephany, D.A., Cooper, J.N., Marsh, J.W. & Wu, Y. (2008) HIV envelope-CXCR4 signaling activates cofilin to overcome cortical actin restriction in resting CD4 T cells. Cell, 134(5), 782-792. https://doi.org/10.1016/j.cell.2008.06.036
- Zhang, L., Jia, X., Zhang, X., Sun, J., Peng, X., Qi, T., Ma, F., Yin, L., Yao, Y., Qiu, C. & Lu, H. (2010) Proteomic analysis of PBMCs: characterization of potential HIV-associated proteins. Proteome Science, 8, 12. https://doi.org/10.1186/1477-5956-8-12
- Zhao, H., Pykäläinen, A. & Lappalainen, P. (2011) I-BAR domain proteins: linking actin and plasma membrane dynamics. Current Opinion in Cell Biology, 23(1), 14-21. https://doi.org/10.1016/j.ceb.2010.10.005