Transcriptomic rationale for synthetic lethality-targeting ERCC1 and CDKN1A in chronic myelomonocytic leukaemia
Ana M. Hurtado
Haematology Department, Hospital Morales Meseguer, IMIB, Murcia, Spain
Search for more papers by this authorGines Luengo-Gil
Haematology Department, Hospital Morales Meseguer, IMIB, Murcia, Spain
Search for more papers by this authorTzu H. Chen-Liang
Haematology Department, Hospital Morales Meseguer, IMIB, Murcia, Spain
Search for more papers by this authorFabio Amaral
Leukaemia Biology Laboratory, Cancer Research UK, Manchester Institute, University of Manchester, Manchester, UK
Search for more papers by this authorKiran Batta
Division of Cancer Sciences, Cancer Research UK, Manchester Institute, University of Manchester, Manchester, UK
Search for more papers by this authorLaura Palomo
Josep Carreras Leukaemia- Research Institute, ICO-Hospital Germans Trias i Pujol, Badalona, Spain
Search for more papers by this authorEva Lumbreras
Department of Haematology, Hospital Universitario de Salamanca, Salamanca, Spain
Search for more papers by this authorBartlomiej Przychodzen
Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, USA
Search for more papers by this authorEva Caparros
Haematology Department, Hospital Morales Meseguer, IMIB, Murcia, Spain
Search for more papers by this authorMarıa L. Amigo
Haematology Department, Hospital Morales Meseguer, IMIB, Murcia, Spain
Search for more papers by this authorMaria Dıez-Campelo
Department of Haematology, Hospital Universitario de Salamanca, Salamanca, Spain
Search for more papers by this authorLurdes Zamora
Josep Carreras Leukaemia- Research Institute, ICO-Hospital Germans Trias i Pujol, Badalona, Spain
Search for more papers by this authorEduardo J. Salido Fierrez
Department of Haematology, Virgen de la Arrixaca University Hospital, IMIB, Murcia, Spain
Search for more papers by this authorJaroslaw P. Maciejewski
Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, USA
Search for more papers by this authorFrancisco J. Ortuño
Haematology Department, Hospital Morales Meseguer, IMIB, Murcia, Spain
Search for more papers by this authorVicente Vicente
Haematology Department, Hospital Morales Meseguer, IMIB, Murcia, Spain
Search for more papers by this authorMarıa del Canizo
Department of Haematology, Hospital Universitario de Salamanca, Salamanca, Spain
Search for more papers by this authorFrancesc Sole
Josep Carreras Leukaemia- Research Institute, ICO-Hospital Germans Trias i Pujol, Badalona, Spain
Search for more papers by this authorFrancisca Ferrer-Marin
Haematology Department, Hospital Morales Meseguer, IMIB-CIBERERUCAM, Murcia, Spain
Search for more papers by this authorDaniel H. Wiseman
Leukaemia Biology Laboratory, Cancer Research UK, Manchester Institute, University of Manchester, Manchester, UK
Search for more papers by this authorCorresponding Author
Andres Jerez
Haematology Department, Hospital Morales Meseguer, IMIB, Murcia, Spain
Correspondence: Andres Jerez, Haematology and Medical Oncology Department, Hospital Morales Meseguer, Marqués de los Vélez s/n, Murcia 30008, Spain.
E-mail: [email protected]
Search for more papers by this authorAna M. Hurtado
Haematology Department, Hospital Morales Meseguer, IMIB, Murcia, Spain
Search for more papers by this authorGines Luengo-Gil
Haematology Department, Hospital Morales Meseguer, IMIB, Murcia, Spain
Search for more papers by this authorTzu H. Chen-Liang
Haematology Department, Hospital Morales Meseguer, IMIB, Murcia, Spain
Search for more papers by this authorFabio Amaral
Leukaemia Biology Laboratory, Cancer Research UK, Manchester Institute, University of Manchester, Manchester, UK
Search for more papers by this authorKiran Batta
Division of Cancer Sciences, Cancer Research UK, Manchester Institute, University of Manchester, Manchester, UK
Search for more papers by this authorLaura Palomo
Josep Carreras Leukaemia- Research Institute, ICO-Hospital Germans Trias i Pujol, Badalona, Spain
Search for more papers by this authorEva Lumbreras
Department of Haematology, Hospital Universitario de Salamanca, Salamanca, Spain
Search for more papers by this authorBartlomiej Przychodzen
Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, USA
Search for more papers by this authorEva Caparros
Haematology Department, Hospital Morales Meseguer, IMIB, Murcia, Spain
Search for more papers by this authorMarıa L. Amigo
Haematology Department, Hospital Morales Meseguer, IMIB, Murcia, Spain
Search for more papers by this authorMaria Dıez-Campelo
Department of Haematology, Hospital Universitario de Salamanca, Salamanca, Spain
Search for more papers by this authorLurdes Zamora
Josep Carreras Leukaemia- Research Institute, ICO-Hospital Germans Trias i Pujol, Badalona, Spain
Search for more papers by this authorEduardo J. Salido Fierrez
Department of Haematology, Virgen de la Arrixaca University Hospital, IMIB, Murcia, Spain
Search for more papers by this authorJaroslaw P. Maciejewski
Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, USA
Search for more papers by this authorFrancisco J. Ortuño
Haematology Department, Hospital Morales Meseguer, IMIB, Murcia, Spain
Search for more papers by this authorVicente Vicente
Haematology Department, Hospital Morales Meseguer, IMIB, Murcia, Spain
Search for more papers by this authorMarıa del Canizo
Department of Haematology, Hospital Universitario de Salamanca, Salamanca, Spain
Search for more papers by this authorFrancesc Sole
Josep Carreras Leukaemia- Research Institute, ICO-Hospital Germans Trias i Pujol, Badalona, Spain
Search for more papers by this authorFrancisca Ferrer-Marin
Haematology Department, Hospital Morales Meseguer, IMIB-CIBERERUCAM, Murcia, Spain
Search for more papers by this authorDaniel H. Wiseman
Leukaemia Biology Laboratory, Cancer Research UK, Manchester Institute, University of Manchester, Manchester, UK
Search for more papers by this authorCorresponding Author
Andres Jerez
Haematology Department, Hospital Morales Meseguer, IMIB, Murcia, Spain
Correspondence: Andres Jerez, Haematology and Medical Oncology Department, Hospital Morales Meseguer, Marqués de los Vélez s/n, Murcia 30008, Spain.
E-mail: [email protected]
Search for more papers by this authorSummary
Despite the absence of mutations in the DNA repair machinery in myeloid malignancies, the advent of high-throughput sequencing and discovery of splicing and epigenetics defects in chronic myelomonocytic leukaemia (CMML) prompted us to revisit a pathogenic role for genes involved in DNA damage response. We screened for misregulated DNA repair genes by enhanced RNA-sequencing on bone marrow from a discovery cohort of 27 CMML patients and 9 controls. We validated 4 differentially expressed candidates in CMML CD34+ bone marrow selected cells and in an independent cohort of 74 CMML patients, mutationally contextualized by targeted sequencing, and assessed their transcriptional behavior in 70 myelodysplastic syndrome, 66 acute myeloid leukaemia and 25 chronic myeloid leukaemia cases. We found BAP1 and PARP1 down-regulation to be specific to CMML compared with other related disorders. Chromatin-regulator mutated cases showed decreased BAP1 dosage. We validated a significant over-expression of the double strand break-fidelity genes CDKN1A and ERCC1, independent of promoter methylation and associated with chemorefractoriness. In addition, patients bearing mutations in the splicing component SRSF2 displayed numerous aberrant splicing events in DNA repair genes, with a quantitative predominance in the single strand break pathway. Our results highlight potential targets in this disease, which currently has few therapeutic options.
Disclosure of Conflicts of interest
The authors have nothing to disclose.
Supporting Information
Filename | Description |
---|---|
bjh15408-sup-0001-Supinfo.docxWord document, 2.3 MB |
Data S1. Supplementary methods. Figure S1. Transcriptome assessment of genes involved in DNA repair: differences between patiens and healthy controls in CMML RNA-seq experiment (upper panel) and complex karyotype AML MILE study extracted data (lower panel). Figure S2. Bone marrow CD34+ cells: CDKN1A, ERCC1, PARP1 and BAP1 RT-qPCR expression in 12 CMML, 15 MDS and 15 healthy donors. Figure S3. Mutational landscape of recurrently mutated genes in CMML in 57 patients from the validation cohort. Figure S4. Transcriptome assessment of genes involved in DNA repair extracted from the MILE study: differences between MDS patients and healthy controls. Figure S5. Venn diagram showing the overlap between dysregulated genes in CMML, MDS and ckAML. Table SI. Probes used in the RT-qPCR validation experiment. Table SII. Probes sequences in the pyrosequencing experiment. Table SIII Targeted amplicon sequencing design. Table SIV. Significant gene expression differences by RNA-Seq in DNA repair genes between CMML patient and healthy controls. Table SV. Gene expression differences of CDKN1A, ERCC1, PARP1 and BAP1 by direct and global techniques in CMML discovery and validation, and myeloid extension cohorts. Table SVI. Cellular compartment size in 18 bone marrow samples from the CMML discovery cohort and analysis of potential correlation with the expression of our 4 main candidate genes. Table SVII. Methylation status of CpG sites within the promoter regions of 26 RNA-seq differently expressed DNA repair genes. Table SVIII. Methylation status of CpG sites within the promoter regions of ERCC1 and CDK1NA by pyrosequencing in CMML patients. Table SIX. Mutations found in the targeted amplicon sequencing approach in the CMML validation cohort. Table SX. Skipped exons. Table SXI. Mutually exclusive exons. Table SXII. Alternative 3′ splice sites. Table SXIII. Alternative 5′ splice sites. Table SXIV. Retained introns. Table SXV. Clinical associations of validated DEGs in our CMML extended cohort. Table SXVI. Baseline characteristics of MDS patients included in the RT-qPCR validations cohort. Table SXVII. Characteristics of AML patients included in the rt-qPCR cohort (n=53). Table SXVIII. Significant gene expression differences in DNA repair genes between MDS patient and healthy controls obtained from the MILE Study. Table SXIX. Significant gene expression differences in DNA repair genes between ckAML patients and healthy controls obtained from MILE Study. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Ahmad, A., Robinson, A.R., Duensing, A., van Drunen, E., Beverloo, H.B., Weisberg, D.B., Hasty, P., Hoeijmakers, J.H.J. & Niedernhofer, L.J. (2008) ERCC1-XPF endonuclease facilitates DNA double-strand break repair. Molecular and Cellular Biology, 28, 5082–5092.
- Arber, D.A., Orazi, A., Hasserjian, R., Thiele, J., Borowitz, M.J., Le Beau, M.M., Bloomfield, C.D., Cazzola, M. & Vardiman, J.W. (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 127, 2391–2405.
- Brugarolas, J., Chandrasekaran, C., Gordon, J.I., Beach, D., Jacks, T. & Hannon, G.J. (1995) Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature, 377, 552–557.
- Bryant, H.E., Schultz, N., Thomas, H.D., Parker, K.M., Flower, D., Lopez, E., Kyle, S., Meuth, M., Curtin, N.J. & Helleday, T. (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature, 434, 913–917.
- Ciriello, G., Miller, M.L., Aksoy, B.A., Senbabaoglu, Y., Schultz, N. & Sander, C. (2013) Emerging landscape of oncogenic signatures across human cancers. Nature Genetics, 45, 1127–1133.
- Dey, A., Seshasayee, D., Noubade, R., French, D.M., Liu, J., Chaurushiya, M.S., Kirkpatrick, D.S., Pham, V.C., Lill, J.R., Bakalarski, C.E., Wu, J., Phu, L., Katavolos, P., LaFave, L.M., Abdel-Wahab, O., Modrusan, Z., Seshagiri, S., Dong, K., Lin, Z., Balazs, M., Newton, K., Hymowitz, S., Garcia-Manero, G., Martin, F., Levine, R.L. & Dixit, V.M. (2012) Loss of the tumor suppressor BAP1 causes myeloid transformation. Science, 337, 1541–1546.
- Dkhissi, F., Aggoune, D., Pontis, J., Sorel, N., Piccirilli, N., LeCorf, A., Guilhot, F., Chomel, J.C., Ait-Si-Ali, S. & Turhan, A.G. (2015) The downregulation of BAP1 expression by BCR-ABL reduces the stability of BRCA1 in chronic myeloid leukemia. Experimental Hematology, 43, 775–780.
- Dolatshad, H., Pellagatti, A., Fernandez-Mercado, M., Yip, B.H., Malcovati, L., Attwood, M., Przychodzen, B., Sahgal, N., Kanapin, A.A., Lockstone, H., Scifo, L., Vandenberghe, P., Papaemmanuil, E., Smith, C.W.J., Campbell, P.J., Ogawa, S., Maciejewski, J.P., Cazzola, M., Savage, K.I. & Boultwood, J. (2015) Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells. Leukemia, 29, 1092–1103.
- Figueroa, M.E., Lugthart, S., Li, Y., Erpelinck-Verschueren, C., Deng, X., Christos, P.J., Schifano, E., Booth, J., van Putten, W., Skrabanek, L., Campagne, F., Mazumdar, M., Greally, J.M., Valk, P.J.M., Löwenberg, B., Delwel, R. & Melnick, A. (2010) DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell, 17, 13–27.
- Gaymes, T.J., Shall, S., MacPherson, L.J., Twine, N.A., Lea, N.C., Farzaneh, F. & Mufti, G.J. (2009) Inhibitors of poly ADP-ribose polymerase (PARP) induce apoptosis of myeloid leukemic cells: potential for therapy of myeloid leukemia and myelodysplastic syndromes. Haematologica, 94, 638–646.
- Gaymes, T.J., Mohamedali, A.M., Patterson, M., Matto, N., Smith, A., Kulasekararaj, A., Chelliah, R., Curtin, N., Farzaneh, F., Shall, S. & Mufti, G.J. (2013) Microsatellite instability induced mutations in DNA repair genes CtIP and MRE11 confer hypersensitivity to poly (ADP-ribose) polymerase inhibitors in myeloid malignancies. Haematologica, 98, 1397–1406. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23349304 (Accessed November 15, 2017).
- Haferlach, T., Kohlmann, A., Wieczorek, L., Basso, G., Te Kronnie, G., Béné, M.C., De Vos, J., Hernández, J.M., Hofmann, W.K., Mills, K.I., Gilkes, A., Chiaretti, S., Shurtleff, S.A., Kipps, T.J., Rassenti, L.Z., Yeoh, A.E., Papenhausen, P.R., Liu, W.M., Williams, P.M. & Foà, R. (2010) Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: Report from the international microarray innovations in leukemia study group. Journal of Clinical Oncology, 28, 2529–2537.
- Huang, D., Nagata, Y., Grossmann, V., Radivoyevitch, T., Okuno, Y., Nagae, G., Hosono, N., Schnittger, S., Sanada, M., Przychodzen, B., Kon, A., Polprasert, C., Shen, W., Clemente, M.J., Phillips, J.G., Alpermann, T., Yoshida, K., Nadarajah, N., Sekeres, M.A., Oakley, K., Nguyen, N., Shiraishi, Y., Shiozawa, Y., Chiba, K., Tanaka, H., Koeffler, H.P., Klein, H.U., Dugas, M., Aburatani, H., Miyano, S., Haferlach, C., Kern, W., Haferlach, T., Du, Y., Ogawa, S. & Makishima, H. (2015) BRCC3 mutations in myeloid neoplasms. Haematologica, 100, 1051–1057.
- Itzykson, R. & Fenaux, P. (2014) Epigenetics of myelodysplastic syndromes. Leukemia, 28, 497–506.
- Jerez, A., Sugimoto, Y., Makishima, H., Verma, A., Jankowska, A.M., Przychodzen, B., Visconte, V., Tiu, R.V., O'Keefe, C.L., Mohamedali, A.M., Kulasekararaj, A.G., Pellagatti, A., McGraw, K., Muramatsu, H., Moliterno, A.R., Sekeres, M.A., McDevitt, M.A., Kojima, S., List, A., Boultwood, J., Mufti, G.J. & Maciejewski, J.P. (2012) Loss of heterozygosity in 7q myeloid disorders: clinical associations and genomic pathogenesis. Blood, 119, 6109–6117.
- Kar, S.A., Jankowska, A., Makishima, H., Visconte, V., Jerez, A., Sugimoto, Y., Muramatsu, H., Traina, F., Afable, M., Guinta, K., Tiu, R.V., Przychodzen, B., Sakaguchi, H., Kojima, S., Sekeres, M.A., List, A.F., McDevitt, M.A. & Maciejewski, J.P. (2013) Spliceosomal gene mutations are frequent events in the diverse mutational spectrum of chronic myelomonocytic leukemia but largely absent in juvenile myelomonocytic leukemia. Haematologica, 98, 107–113.
- Kim, Y., Lach, F.P., Desetty, R., Hanenberg, H., Auerbach, A.D. & Smogorzewska, A. (2011) Mutations of the SLX4 gene in Fanconi anemia. Nature Genetics, 43, 142–146.
- Kim, E., Ilagan, J.O., Liang, Y., Daubner, G.M., Lee, S.C.W., Ramakrishnan, A., Li, Y., Chung, Y.R., Micol, J.B., Murphy, M.E., Cho, H., Kim, M.K., Zebari, A.S., Aumann, S., Park, C.Y., Buonamici, S., Smith, P.G., Deeg, H.J., Lobry, C., Aifantis, I., Modis, Y., Allain, F.H., Halene, S., Bradley, R.K. & Abdel-Wahab, O. (2015) SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell, 27, 617–630.
- Lee, M.J., Ye, A.S., Gardino, A.K., Heijink, A.M., Sorger, P.K., MacBeath, G. & Yaffe, M.B. (2012) Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell, 149, 780–794.
- McWhir, J., Selfridge, J., Harrison, D.J., Squires, S. & Melton, D.W. (1993) Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nature Genetics, 5, 217–224.
- Meggendorfer, M., Roller, A., Haferlach, T., Eder, C., Dicker, F., Grossmann, V., Kohlmann, A., Alpermann, T., Yoshida, K., Ogawa, S., Koeffler, H.P., Kern, W., Haferlach, C. & Schnittger, S. (2012) SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Blood, 120, 3080–3088.
- Mills, K.I., Kohlmann, A., Williams, P.M., Wieczorek, L., Liu, W.M., Li, R., Wei, W., Bowen, D.T., Loeffler, H., Hernandez, J.M., Hofmann, W.K. & Haferlach, T. (2009) Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome. Blood, 114, 1063–1072.
- Muvarak, N.E., Chowdhury, K., Xia, L., Robert, C., Choi, E.Y., Cai, Y., Bellani, M., Zou, Y., Singh, Z.N., Duong, V.H., Rutherford, T., Nagaria, P., Bentzen, S.M., Seidman, M.M., Baer, M.R., Lapidus, R.G., Baylin, S.B. & Rassool, F.V. (2016) Enhancing the cytotoxic effects of PARP inhibitors with DNA demethylating agents – a potential therapy for cancer. Cancer Cell, 30, 637–650.
- Papaemmanuil, E., Gerstung, M., Bullinger, L., Gaidzik, V.I., Paschka, P., Roberts, N.D., Potter, N.E., Heuser, M., Thol, F., Bolli, N., Gundem, G., Van Loo, P., Martincorena, I., Ganly, P., Mudie, L., McLaren, S., O'Meara, S., Raine, K., Jones, D.R., Teague, J.W., Butler, A.P., Greaves, M.F., Ganser, A., Döhner, K., Schlenk, R.F., Döhner, H. & Campbell, P.J. (2016) Genomic classification and prognosis in acute myeloid leukemia. New England Journal of Medicine, 374, 2209–2221.
- Patel, B.J., Przychodzen, B., Thota, S., Radivoyevitch, T., Visconte, V., Kuzmanovic, T., Clemente, M., Hirsch, C., Morawski, A., Souaid, R., Saygin, C., Nazha, A., Demarest, B., LaFramboise, T., Sakaguchi, H., Kojima, S., Carraway, H.E., Ogawa, S., Makishima, H., Sekeres, M.A. & Maciejewski, J.P. (2017) Genomic determinants of chronic myelomonocytic leukemia. Leukemia, 31, 2815–2823.
- Pederiva, C., Böhm, S., Julner, A. & Farnebo, M. (2016) Splicing controls the ubiquitin response during DNA double-strand break repair. Cell Death and Differentiation, 23, 1648–1657.
- Pérez, C., Martínez-Calle, N., Martín-Subero, J.I., Segura, V., Delabesse, E., Fernandez-Mercado, M., Garate, L., Alvarez, S., Rifon, J., Varea, S., Boultwood, J., Wainscoat, J.S., Cruz Cigudosa, J., Calasanz, M.J., Cross, N.C.P., Prósper, F. & Agirre, X. (2012) TET2 mutations are associated with specific 5-methylcytosine and 5-hydroxymethylcytosine profiles in patients with chronic myelomonocytic leukemia. PLoS ONE, 7, e31605.
- Shen, S., Park, J.W., Lu, Z., Lin, L., Henry, M.D., Wu, Y.N., Zhou, Q. & Xing, Y. (2014) rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proceedings of the National Academy of Sciences of the United States of America, 111, E5593–E5601.
- Such, E., Cervera, J., Costa, D., Solé, F., Vallespí, T., Luño, E., Collado, R., Calasanz, M.J., Hernández-Rivas, J.M., Cigudosa, J.C., Nomdedeu, B., Mallo, M., Carbonell, F., Bueno, J., Ardanaz, M.T., Ramos, F., Tormo, M., Sancho-Tello, R., del Cañizo, C., Gómez, V., Marco, V., Xicoy, B., Bonanad, S., Pedro, C., Bernal, T. & Sanz, G.F. (2011) Cytogenetic risk stratification in chronic myelomonocytic leukemia. Haematologica, 96, 375–383.
- Swerdlow, S.H., Campo, E., Harris, N.L., Jaffe, E.S., Pileri, S.A., Stein, H., Thiele, J. & Vardiman, J.W. (2008) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th edn. International Agency for Research on Cancer Press, Lyon, France.
- Tong, K.I., Ota, K., Komuro, A., Ueda, T., Ito, A., Anne Koch, C. & Okada, H. (2016) Attenuated DNA damage repair delays therapy-related myeloid neoplasms in a mouse model. Cell Death and Disease, 7, e2401.
- Valletta, S., Dolatshad, H., Bartenstein, M., Yip, B.H., Bello, E., Gordon, S., Yu, Y., Shaw, J., Roy, S., Scifo, L., Schuh, A., Pellagatti, A., Fulga, T.A., Verma, A. & Boultwood, J. (2015) ASXL1 mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts. Oncotarget, 6, 44061–44071.
- Vardiman, J.W., Ergen Thiele, J., Arber, D.A., Brunning, R.D., Borowitz, M.J., Porwit, A., Harris, N.L., Le Beau, M.M., Hellström-Lindberg, E., Tefferi, A. & Bloomfield, C.D. (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood, 114, 937–951.
- Wray, J., Williamson, E.A., Singh, S.B., Wu, Y., Cogle, C.R., Weinstock, D.M., Zhang, Y., Lee, S.H., Zhou, D., Shao, L., Hauer-Jensen, M., Pathak, R., Klimek, V., Nickoloff, J.A. & Hromas, R. (2013) PARP1 is required for chromosomal translocations. Blood, 121, 4359–4365.
- Yoshida, K., Sanada, M., Shiraishi, Y., Nowak, D., Nagata, Y., Yamamoto, R., Sato, Y., Sato-Otsubo, A., Kon, A., Nagasaki, M., Chalkidis, G., Suzuki, Y., Shiosaka, M., Kawahata, R., Yamaguchi, T., Otsu, M., Obara, N., Sakata-Yanagimoto, M., Ishiyama, K., Mori, H., Nolte, F., Hofmann, W.K., Miyawaki, S., Sugano, S., Haferlach, C., Koeffler, H.P., Shih, L.Y., Haferlach, T., Chiba, S., Nakauchi, H., Miyano, S. & Ogawa, S. (2011) Frequent pathway mutations of splicing machinery in myelodysplasia. Nature, 478, 64–69.
- Zereshkian, A., Leyton, J.V., Cai, Z., Bergstrom, D., Weinfeld, M. & Reilly, R.M. (2014) The human polynucleotide kinase/phosphatase (hPNKP) inhibitor A12B4C3 radiosensitizes human myeloid leukemia cells to Auger electron-emitting anti-CD123 111In-NLS-7G3 radioimmunoconjugates. Nuclear Medicine and Biology, 41, 377–383.
- Zhang, Y. & Jasin, M. (2011) An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nature Structural & Molecular Biology, 18, 80–84.