The alleviatory effects of koumine on MSU-induced gouty arthritis via the TLR4/NF-κB/NLRP3 pathway
Shi-kang Lin
School of Stomatology, Fujian Medical University, Fuzhou, China
Search for more papers by this authorShi-ting Chen
Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
Search for more papers by this authorYing Zhan
School of Stomatology, Fujian Medical University, Fuzhou, China
Search for more papers by this authorXin-yue Guo
School of Stomatology, Fujian Medical University, Fuzhou, China
Search for more papers by this authorWen-tao Wu
School of Stomatology, Fujian Medical University, Fuzhou, China
Search for more papers by this authorYi-ting Lin
Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
Search for more papers by this authorCorresponding Author
Chang-xi Yu
Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
Correspondence
Jian Yang and Chang-xi Yu, Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Jian Yang
Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
Correspondence
Jian Yang and Chang-xi Yu, Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, China.
Email: [email protected] and [email protected]
Search for more papers by this authorShi-kang Lin
School of Stomatology, Fujian Medical University, Fuzhou, China
Search for more papers by this authorShi-ting Chen
Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
Search for more papers by this authorYing Zhan
School of Stomatology, Fujian Medical University, Fuzhou, China
Search for more papers by this authorXin-yue Guo
School of Stomatology, Fujian Medical University, Fuzhou, China
Search for more papers by this authorWen-tao Wu
School of Stomatology, Fujian Medical University, Fuzhou, China
Search for more papers by this authorYi-ting Lin
Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
Search for more papers by this authorCorresponding Author
Chang-xi Yu
Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
Correspondence
Jian Yang and Chang-xi Yu, Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Jian Yang
Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
Correspondence
Jian Yang and Chang-xi Yu, Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, China.
Email: [email protected] and [email protected]
Search for more papers by this authorShi-kang Lin and Shi-ting Chen contributed equally to this work.
Abstract
The aim of this study was to validate the preventive effects of koumine (KM), a monoterpene indole alkaloid, on gouty arthritis (GA) and to explore its possible mechanisms. C57BL/6 mice were intraperitoneally administered KM (0.8, 2.4 or 7.2 mg/kg), colchicine (3.0 mg/kg) or sterile saline. One hour later, a monosodium urate (MSU) suspension was injected into the right hind paws of the mice to establish an acute gout model. Inflammation symptoms were evaluated at 0, 3, 6, 12 and 24 h, and the mechanical withdrawal threshold was evaluated at 0, 6 and 24 h. After 24 h, the mice were euthanized, and the joint tissue, kidney and blood were collected for subsequent experiments. Histological examination and antioxidant enzyme, kidney index and serum uric acid (UA) measurements were taken. The expression levels of the signalling pathway components were determined. KM effectively alleviated the symptoms of redness, swelling and pain; counteracted inflammatory cell infiltration; and increased antioxidant enzyme levels, reduced kidney index and serum UA levels through regulating UA excretion in MSU-induced mice. The expression of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB)/nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) signalling pathway proteins and mRNA were reduced in the KM group. These results suggest that KM may be effective in alleviating GA through the TLR4/NF-κB/NLRP3 pathway.
CONFLICT OF INTEREST STATEMENT
The authors report that there are no competing interests to declare.
Open Research
DATA AVAILABILITY STATEMENT
The datasets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.
REFERENCES
- 1So AK, Martinon F. Inflammation in gout: mechanisms and therapeutic targets. Nat Rev Rheumatol. 2017; 13(11): 639-647. doi:10.1038/nrrheum.2017.155
- 2Zaninelli TH, Fattori V, Saraiva-Santos T, et al. RvD1 disrupts nociceptor neuron and macrophage activation and neuroimmune communication, reducing pain and inflammation in gouty arthritis in mice. Br J Pharmacol. 2022; 179(18): 4500-4515. doi:10.1111/bph.15897
- 3Richette P, Bardin T. Purine-rich foods: an innocent bystander of gout attacks? Ann Rheum Dis. 2012; 71(9): 1435-1436. doi:10.1136/annrheumdis-2012-201838
- 4Cleophas MC, Crisan TO, Joosten LAB. Factors modulating the inflammatory response in acute gouty arthritis. Curr Opin Rheumatol. 2017; 29(2): 163-170. doi:10.1097/BOR.0000000000000366
- 5Cheng JJ, Ma XD, Ai GX, et al. Palmatine protects against MSU-induced gouty arthritis via regulating the NF-κB/NLRP3 and Nrf2 pathway. Drug Des Dev Ther. 2022; 16: 2119-2132. doi:10.2147/DDDT.S356307
- 6Hansildaar R, Vedder D, Baniaamam M, Tausche AK, Gerritsen M, Nurmohamed MT. Cardiovascular risk in inflammatory arthritis: rheumatoid arthritis and gout. Lancet Rheumatol. 2021; 3(1): E58-E70. doi:10.1016/S2665-9913(20)30221-6
- 7Johnson RJ, Bakris GL, Borghi C, et al. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the National Kidney Foundation. Am J Kidney Dis. 2018; 71(6): 851-865. doi:10.1053/j.ajkd.2017.12.009
- 8Desai J, Steiger S, Anders HJ. Molecular pathophysiology of gout. Trends Mol Med. 2017; 23(8): 756-768. doi:10.1016/j.molmed.2017.06.005
- 9Lee JH, Kim HS, Lee JH, Yang G, Kim HJ. Natural products as a novel therapeutic strategy for NLRP3 inflammasome-mediated gout. Front Pharmacol. 2022; 13. doi:10.3389/fphar.2022.861399
- 10Cavalli G, Dinarello CA. Anakinra therapy for non-cancer inflammatory diseases. Front Pharmacol. 2018; 9:1157. doi:10.3389/fphar.2018.01157
- 11Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006; 440(7081): 237-241. doi:10.1038/nature04516
- 12Li WY, Yang F, Chen JH, Ren GF. Beta-caryophyllene ameliorates MSU-induced gouty arthritis and inflammation through inhibiting NLRP3 and NF-kappa B signal pathway: in silico and in vivo. Front Pharmacol. 2021; 12. doi:10.3389/fphar.2021.651305
- 13Wan P, Zhang SM, Ruan ZH, et al. AP-1 signaling pathway promotes pro-IL-1 beta transcription to facilitate NLRP3 inflammasome activation upon influenza A virus infection. Virulence. 2022; 13(1): 502-513. doi:10.1080/21505594.2022.2040188
- 14Huang QS, Gao W, Mu H, et al. HSP60 regulates monosodium urate crystal-induced inflammation by activating the TLR4-NF-kappa B-Myd88 signaling pathway and disrupting mitochondrial function. Oxid Med Cell Longev. 2020; 2020:8706898. doi:10.1155/2020/8706898
- 15Yang G, Lee HE, Moon SJ, et al. Direct binding to NLRP3 pyrin domain as a novel strategy to prevent NLRP3-driven inflammation and gouty arthritis. Arthritis Rheum. 2020; 72(7): 1192-1202. doi:10.1002/art.41245
- 16Khanna PP, Gladue HS, Singh MK, et al. Treatment of acute gout: a systematic review. Semin Arthritis Rheum. 2014; 44(1): 31-38. doi:10.1016/j.semarthrit.2014.02.003
- 17Slobodnick A, Shah B, Krasnokutsky S, Pillinger MH. Update on colchicine, 2017. Rheumatology (Oxford). 2018; 57(suppl_1): i4-i11. doi:10.1093/rheumatology/kex453
- 18Dalbeth N, Lauterio TJ, Wolfe HR. Mechanism of action of colchicine in the treatment of gout. Clin Ther. 2014; 36(10): 1465-1479. doi:10.1016/j.clinthera.2014.07.017
- 19Li MT, Yu C, Zeng XF. Comparative efficacy of traditional non-selective NSAIDs and selective cyclo-oxygenase-2 inhibitors in patients with acute gout: a systematic review and meta-analysis. BMJ Open. 2020; 10(9): 10. doi:10.1136/bmjopen-2019-036748
- 20Williams DM. Clinical pharmacology of corticosteroids. Respir Care. 2018; 63(6): 655-670. doi:10.4187/respcare.06314
- 21Piao MH, Wang H, Jiang YJ, Wu YL, Nan JX, Lian LH. Taxifolin blocks monosodium urate crystal-induced gouty inflammation by regulating phagocytosis and autophagy. Inflammopharmacology. 2022; 30(4): 1335-1349. doi:10.1007/s10787-022-01014-x
- 22Riaz M, Al Kury LT, Atzaz N, et al. Carvacrol alleviates hyperuricemia-induced oxidative stress and inflammation by modulating the NLRP3/NF-kappa B. Drug des Dev Ther. 2022; 16: 1159-1170. doi:10.2147/DDDT.S343978
- 23Xiong BJ, Zhong ZF, Chen CJ, et al. The anxiolytic effect of koumine on a predatory sound stress-induced anxiety model and its associated molecular mechanisms. Phytomedicine. 2022; 103: 154225. doi:10.1016/j.phymed.2022.154225
- 24Jin GL, Hong LMA, Liu HP, et al. Koumine modulates spinal microglial M1 polarization and the inflammatory response through the Notch-RBP-J kappa signaling pathway, ameliorating diabetic neuropathic pain in rats. Phytomedicine. 2021; 90: 153640. doi:10.1016/j.phymed.2021.153640
- 25Yang J, Cai HD, Zeng YL, et al. Effects of koumine on adjuvant- and collagen-induced arthritis in rats. J Nat Prod. 2016; 79(10): 2635-2643. doi:10.1021/acs.jnatprod.6b00554
- 26Xiong BJ, Jin GL, Xu Y, et al. Identification of koumine as a translocator protein 18 kDa positive allosteric modulator for the treatment of inflammatory and neuropathic pain. Front Pharmacol. 2021; 12:692917. doi:10.3389/fphar.2021.692917
- 27Lin YR, Liu Q, Chen ZH, et al. The immunomodulatory effect of koumine on B cells under dependent and independent responses by T cells. Eur J Pharmacol. 2022; 914: 174690. doi:10.1016/j.ejphar.2021.174690
- 28Luo YF, Xiong BJ, Liu HP, et al. Koumine suppresses IL-1 beta secretion and attenuates inflammation associated with blocking ROS/NF-kappa B/NLRP3 axis in macrophages. Front Pharmacol. 2021; 11:622074. doi:10.3389/fphar.2020.622074
- 29Tveden-Nyborg P, Bergmann TK, Jessen N, Simonsen U, Lykkesfeldt J. BCPT 2023 policy for experimental and clinical studies. Basic Clin Pharmacol Toxicol. 2023; 133(4): 391-396. doi:10.1111/bcpt.13944
- 30Fan HF, Fang XY, Wu HL, et al. Effects of stephania hainanensis alkaloids on MSU-induced acute gouty arthritis in mice. BMC Complement Med Ther. 2021; 21(1): 21. doi:10.1186/s12906-021-03364-5
- 31Cumpelik A, Ankli B, Zecher D, Schifferli JA. Neutrophil microvesicles resolve gout by inhibiting C5a-mediated priming of the inflammasome. Ann Rheum Dis. 2016; 75(6): 1236-1245. doi:10.1136/annrheumdis-2015-207338
- 32Collins MW, Saag KG, Singh JA. Is there a role for cherries in the management of gout? Ther Adv Musculoskel Dis. 2019; 11: 11. doi:10.1177/1759720X19847018
- 33Leask MP, Sumpter NA, Lupi AS, et al. The shared genetic basis of hyperuricemia, gout, and kidney function. Semin Nephrol. 2020; 40(6): 586-599. doi:10.1016/j.semnephrol.2020.12.002
- 34Dalbeth N, Choi HK, Joosten LAB, et al. Gout Nature Reviews Disease Primers. Vol. 5; 2019.
- 35Ragab G, Elshahaly M, Bardin T. Gout: An old disease in new perspective—a review. J Adv Res. 2017; 8(5): 495-511. doi:10.1016/j.jare.2017.04.008
- 36Dalbeth N, Gosling AL, Gaffo A, Abhishek A. Gout. Lancet. 2021; 397(10287): 1843-1855. doi:10.1016/S0140-6736(21)00569-9
- 37Zhao L, Ye WJ, Zhu YF, et al. Distinct macrophage polarization in acute and chronic gout. Lab Invest. 2022; 102(10): 1054-1063. doi:10.1038/s41374-022-00798-4
- 38Yuan ZH, Matias FB, Wu J, Liang ZGN, Sun ZL. Koumine attenuates lipopolysaccaride-stimulated inflammation in RAW264.7 macrophages, coincidentally associated with inhibition of NF-kappa B, ERK and p38 pathway. Int J Mol Sci. 2016; 17(3): 17. doi:10.3390/ijms17030430
- 39Gill R, Tsung A, Billiar T. Linking oxidative stress to inflammation: toll-like receptors. Free Radic Biol Med. 2010; 48(9): 1121-1132. doi:10.1016/j.freeradbiomed.2010.01.006
- 40Ma CL, Yang XM, Lv QL, et al. Soluble uric acid induces inflammation via TLR4/NLRP3 pathway in intestinal epithelial cells. Iran J Basic Med Sci. 2020; 23(6): 744-750. doi:10.22038/ijbms.2020.44948.10482
- 41Jhang JJ, Lu CC, Yen GC. Epigallocatechin gallate inhibits urate crystals-induced peritoneal inflammation in C57BL/6 mice. Mol Nutr Food Res. 2016; 60(10): 2297-2303. doi:10.1002/mnfr.201600106
- 42Liu HJ, Pan XX, Liu BQ, et al. Grape seed-derived procyanidins alleviate gout pain via NLRP3 inflammasome suppression. J Neuroinflammation. 2017; 14(1): 74. doi:10.1186/s12974-017-0849-y
- 43Neilson J, Bonnon A, Dickson A, Roddy E, Guideline C. Gout: diagnosis and management-summary of NICE guidance. BMJ-Br Med J. 2022; 378. doi:10.1136/bmj.o1754
10.1136/bmj.o1754 Google Scholar
- 44Place DE, Kanneganti TD. Recent advances in inflammasome biology. Curr Opin Immunol. 2018; 50: 32-38. doi:10.1016/j.coi.2017.10.011
- 45Kumar V. Inflammasomes: Pandora's box for sepsis. J Inflamm re. 2018; 11: 477-502. doi:10.2147/JIR.S178084
- 46Rao ZB, Chen X, Wu JX, et al. Vitamin D receptor inhibits NLRP3 activation by impeding its BRCC3-mediated deubiquitination. Front Immunol. 2019; 10:2783. doi:10.3389/fimmu.2019.02783
- 47Lin XB, Wang H, An XF, et al. Baeckein E suppressed NLRP3 inflammasome activation through inhibiting both the priming and assembly procedure: implications for gout therapy. Phytomedicine. 2021; 84: 153521. doi:10.1016/j.phymed.2021.153521
- 48Xue Y, Li R, Fang P, et al. NLRP3 inflammasome inhibitor cucurbitacin B suppresses gout arthritis in mice. J Mol Endocrinol. 2021; 67(2): 27-40. doi:10.1530/JME-20-0305