Reactive oxygen species impact on sperm DNA and its role in male infertility
A. D. Bui
American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
Search for more papers by this authorR. Sharma
American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
Search for more papers by this authorR. Henkel
Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
Search for more papers by this authorCorresponding Author
A. Agarwal
American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
Correspondence
Ashok Agarwal, American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
Email: [email protected]
Search for more papers by this authorA. D. Bui
American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
Search for more papers by this authorR. Sharma
American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
Search for more papers by this authorR. Henkel
Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
Search for more papers by this authorCorresponding Author
A. Agarwal
American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
Correspondence
Ashok Agarwal, American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
Email: [email protected]
Search for more papers by this authorSummary
Reactive oxygen species (ROS) have been extensively studied as a cause of male infertility. Excessive levels of ROS coupled with a deficiency in antioxidants can lead to oxidative stress (OS), which in turn can lead to nuclear and mitochondrial DNA damage, telomere shortening, epigenetic alterations and Y chromosomal microdeletions. In this review, we discuss how OS induces DNA damage and the types of DNA damage that can occur. We also briefly touch on the clinical consequences of OS-induced DNA damage.
REFERENCES
- Adams, J. A., Galloway, T. S., Mondal, D., Esteves, S. C., & Mathews, F. (2014). Effect of mobile telephones on sperm quality: A systematic review and meta-analysis. Environment International, 70, 106–112. https://doi.org/10.1016/j.envint.2014.04.015
- Agarwal, A., Mulgund, A., Hamada, A., & Chyatte, M. (2015). A unique view on male infertility around the globe. Reproductive Biology and Endocrinology, 13, 37. https://doi.org/10.1186/s12958-015-0032-1
- Agarwal, A., Prabakaran, S., & Allamaneni, S. S. (2006). Relationship between oxidative stress, varicocele, and infertility: A meta-analysis. Reproductive Biomedicine Online, 12, 630–633. https://doi.org/10.1016/S1472-6483(10)61190-X
- Agarwal, A., Saleh, R., & Bedaiwy, M. (2003). Role of reactive oxygen species in the pathophysiology of human reproduction. Fertility and Sterility, 79, 829–843. https://doi.org/10.1016/S0015-0282(02)04948-8
- Agarwal, A., Sharma, R. K., Nallella, K. P., Thomas, A. J. Jr, Alvarez, J. G., & Sikka, S. C. (2006). Reactive oxygen species as an independent marker of male factor infertility. Fertility and Sterility, 86, 878–885. https://doi.org/10.1016/j.fertnstert.2006.02.111
- Aitken, R. J., & Baker, M. A. (2004). Oxidative stress and male reproductive biology. Reproduction and Fertility Development, 16, 581–588. https://doi.org/10.1071/RD03089
- Aitken, R. J., & Baker, M. A. (2013). Causes and consequences of apoptosis in spermatozoa; contributions to infertility and impacts on development. International Journal of Developmental Biology, 57, 265–272. https://doi.org/10.1387/ijdb.130146ja
- Aitken, R. J., Clarkson, J. S., Hargreave, T. B., Irvine, D. S., & Wu, F. C. (1989). Analysis of the relationship between defective sperm function and the generation of reactive oxygen species in cases of oligospermia. Journal of Andrology, 10, 214–220. https://doi.org/10.1002/j.1939-4640.1989.tb00091.x
- Aitken, R. J., & De Iuliis, G. N. (2010). On the possible origins of DNA damage in human spermatozoa. Molecular Human Reproduction, 16, 3–13. https://doi.org/10.1093/molehr/gap059
- Aitken, R. J., De luliis, G. N., Finnie, J. M., Hedges, A., & McLachlan, R. I. (2010). Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: Development of diagnostic criteria. Human Reproduction, 25, 2415–2426. https://doi.org/10.1093/humrep/deq214
- Aitken, R., Gibb, Z., Baker, M. A., Drevet, J., & Gharagozloo, P. (2016). Causes and consequences of oxidative stress in spermatozoa. Reproduction and Fertility Development, 28, 1–10. https://doi.org/10.1071/RD15325
- Aitken, R. J., Gordon, E., Harkiss, D., Twigg, J. P., Milne, P., Jennings, Z., & Irvine, D. S. (1998). Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biology of Reproduction, 59, 1037–1046. https://doi.org/10.1095/biolreprod59.5.1037
- Aitken, R. J., Harkiss, D., Knox, W., Paterson, M., & Irvine, D. S. (1998). A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation. Journal of Cell Science, 111, 645–656.
- Aitken, R. J., & Krausz, C. (2001). Oxidative stress, DNA damage and the Y chromosome. Reproduction, 122, 497–506. https://doi.org/10.1530/rep.0.1220497
- Aitken, R. J., Whiting, S., De luliis, G. N., McClymont, S., Mitchell, L. A., & Baker, M. A. (2012). Electrophilic aldehydes generated by sperm metabolism activate mitochondrial reactive oxygen species generation and apoptosis by targeting succinate dehydrogenase. Journal of Biological Chemistry, 287, 33048–33060. https://doi.org/10.1074/jbc.M112.366690
- Almeida, C., Sousa, M., & Borros, A. (2009). Phosphatidylserine translocation in human spermatozoa from impaired spermatogenesis. Reproductive Biomedicine Online, 19, 770–777. https://doi.org/10.1016/j.rbmo.2009.10.002
- Amaral, A., Lourenco, B., Marques, M., & Ramalho-Santos, J. (2013). Mitochondria functionality and sperm quality. Reproduction, 146, R163–R174. https://doi.org/10.1530/REP-13-0178
- Artandi, S. E., & DePinho, R. A. (2000). A critical role for telomeres in suppressing and facilitating carcinogenesis. Current Opinion Genetics Development, 10, 39–46. https://doi.org/10.1016/S0959-437X(99)00047-7
- Asadi, N., Bahmani, M., Kheradmand, A., & Rafieian-Kopaei, M. (2017). The impact of oxidative stress on testicular function and the role of antioxidants in improving it: A review. Journal of Clinical and Diagnostic Research, 11, IE01–IE05.
- Bauer, N. C., Corbett, A. H., & Doetsch, P. W. (2015). The current state of eukaryotic DNA base damage and repair. Nucleic Acids Research, 43, 10083–10101.
- Benkhalifa, M., Ferreira, Y., Chahine, H., Louanjli, N., Miron, P., Merviel, P., … Copin, H. (2014). Mitochondria: Participation to infertility as source of energy and cause of senescence. International Journal of Biochemistry and Cell Biology, 55, 60–64. https://doi.org/10.1016/j.biocel.2014.08.011
- Bernadotte, A., Mikhelson, V., & Spivak, I. M. (2016). Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging (Albany, NY), 8, 3–11. https://doi.org/10.18632/aging.100871
- Bisht, S., & Dada, R. (2017). Oxidative stress: Major executioner in disease pathology, role in sperm DNA damage and preventative strategies. Frontiers in Bioscience (Schol Ed), 9, 420–447.
- Bisht, S., Faiq, M., Tolahunase, M., & Dada, R. (2017). Oxidative stress and male infertility. Nature Reviews Urology, 14, 470–485. https://doi.org/10.1038/nrurol.2017.69
- Blasco, M. A. (2003). Mammalian telomeres and telomerase: Why they matter for cancer and ageing. European Journal Cell Biology, 82, 441–446. https://doi.org/10.1078/0171-9335-00335
- Bonanno, O., Romeo, G., Asero, P., Pezzino, F. M., Castiglione, R., Burrello, N., … D'Agata, R. (2016). Sperm of patients with severe asthenozoospermia show biochemical, molecular and genomic alterations. Reproduction, 2016(152), 695–704. https://doi.org/10.1530/REP-16-0342
- Bourc'his, D., & Bestor, T. (2004). Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature, 431, 96–99. https://doi.org/10.1038/nature02886
- Bungum, M., Bungum, L., Lynch, K. F., Wedlund, L., Humaidan, P., & Giwercman, A. (2012). Spermatozoa DNA damage measured by sperm chromatin structure assay (SCSA) and birth characteristics in children conceived by IVF and ICSI. International Journal of Andrology, 35, 485–490. https://doi.org/10.1111/j.1365-2605.2011.01222.x
- Burruel, V., Klooster, K., Barker, C. M., Pera, R. R., & Meyers, S. (2014). Abnormal early cleavage events predict early embryo demise: Sperm oxidative stress and early abnormal cleavage. Science Reproduction, 4, 6598.
- Cariati, F., Jaroudi, S., Alfarawati, S., Raberi, A., Alviggi, C., Pivonello, R., & Wells, D. (2016). Investigation of sperm telomere length as a potential marker of paternal integrity and semen quality. Reproductive Biomedicine Online, 33, 404–411. https://doi.org/10.1016/j.rbmo.2016.06.006
- Castagne, V., Lefevre, K., Natero, R., Clarke, P. G., & Bedker, D. A. (1999). An optimal redox status for the survival of axotomized ganglion cells in the developing retina. Neuroscience, 93, 313–320. https://doi.org/10.1016/S0306-4522(99)00138-4
- Cohen-Bacrie, P., Belloc, S., Ménézo, Y. J., Clement, P., Hamidi, J., & Benkhalifa, M. (2009). Correlation between DNA damage and sperm parameters: A prospective study of 1,633 patients. Fertility and Sterility, 91, 1801–1805. https://doi.org/10.1016/j.fertnstert.2008.01.086
- Condorelli, R. A., Russo, G. I., Cologero, A. E., Morgia, G., & La Vignera, S. (2017). Chronic prostatitis and its detrimental impact on sperm parameters: A systematic review and meta-analysis. Journal of Endocrinological Investigation, 40, 1209–1218. https://doi.org/10.1007/s40618-017-0684-0
- De Lamirande, E., Leduc, B. E., Iwasaki, A., Hassouna, M., & Gagnon, C. (1995). Increased reactive oxygen species formation in semen of patients with spinal cord injury. Fertility and Sterility, 63, 637–642. https://doi.org/10.1016/S0015-0282(16)57438-X
- De luliis, G. N., Thomson, L., Mitchell, L., Finnie, J., Koppers, A. J., Hedges, A., … Aitken, R. J. (2009). DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress. Biology of Reproduction, 81, 517–524. https://doi.org/10.1095/biolreprod.109.076836
- Dorostghoal, M., Kazeminejad, S., Shahbazian, N., Pourmehdi, M., & Jabbari, A. (2017). Oxidative stress status and sperm DNA fragmentation in fertile and infertile men. Andrologia, 49, e12762. https://doi.org/10.1111/and.12762
- Drobnis, E. Z. (2015). Are we ready to incorporate sperm DNA fragmentation testing into our male infertility work-up? A plea for more robust studies. Reproductive Biomedicine Online, 30, 111–112. https://doi.org/10.1016/j.rbmo.2014.12.001
- Du Plessis, S. S., Agarwal, A., Halabi, J., & Tvrda, E. (2015). Contemporary evidence on the physiological role of reactive oxygen species in human sperm function. Journal of Assisted Reproduction and Genetics, 32, 509–520. https://doi.org/10.1007/s10815-014-0425-7
- Esterbauer, H., Schaur, R. J., & Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radical Biology and Medicine, 11, 81–128. https://doi.org/10.1016/0891-5849(91)90192-6
- Faure, A., Pivot-Pajot, C., Kerjean, A., Hazzouri, M., Pelletier, R., Peoc'h, M., … Rousseaux, S. (2003). Misregulation of histone acetylation in Sertoli cell-only syndrome and testicular cancer. Molecular Human Reproduction, 9, 757–763. https://doi.org/10.1093/molehr/gag101
- Feng, C. Q., Song, Y. B., Zou, Y. G., & Mao, X. M. (2008). Mutation of MTCYB and MTATP6 is associated with asthenospermia [Chinese]. Zhonghua Nan Ke Xue, 14, 321–323.
- Ferlin, A., Rampazzo, E., Rocca, M. S., Keppel, S., Frigo, A. C., De Rossi, A., … Foresta, C. (2013). In young men sperm telomere length is related to sperm number and parental age. Human Reproduction, 28, 3370–3376. https://doi.org/10.1093/humrep/det392
- Ford, W. C., Whittington, K., & Williams, A. C. (1997). Reactive oxygen species in human sperm suspensions: Production by leukocytes and the generation of NADPH to protect sperm against their effects. International Journal of Andrology, 20, 44–49.
- Fraga, C. G., Motchnik, P. A., Wyrobek, A. J., Rempel, D. M., & Ames, B. N. (1996). Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutation Research, 351, 199–203. https://doi.org/10.1016/0027-5107(95)00251-0
- Fujisawa, M., Tanaka, H., Tatsumi, N., Okada, H., Arakawa, S., & Kamidono, S. (1998). Telomerase activity in the testis of infertile men with selected causes. Human Reproduction, 13(6), 1476–1479. https://doi.org/10.1093/humrep/13.6.1476
- Gaskins, A. J., & Chavarro, J. E. (2017). Diet and fertility: A review. American Journal of Obstetrics and Gynecology, https://doi.org/10.1016/j.ajog.2017.08.010
- Gil-Guzman, E., Ollero, M., Lopez, M. C., Sharma, R. K., Alvarez, J. G., Thomas, A. J., … Agarwal, A. (2001). Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Human Reproduction, 16, 1922–1930. https://doi.org/10.1093/humrep/16.9.1922
- Gomez, E., Buckingham, D. W., Brindle, J., Lanzafame, F., Irvine, D. S., & Aitken, R. J. (1996). Development of an image analysis system to monitor the retention of residual cytoplasm by human spermatozoa: Correlation with biochemical markers of the cytoplasmic space, oxidative stress, and sperm function. Journal of Andrology, 17, 276–287.
- Guz, J., Gackowski, D., Foksinski, M., Rozalski, R., Zarakowska, E., Siomek, A., … Olinski, R. (2013). Comparison of oxidative stress/DNA damage in semen and blood of fertile and infertile men. PLoS ONE, 8, e68490. https://doi.org/10.1371/journal.pone.0068490
- Haendeler, J., Hoffmann, J., Diehl, J. F., Vasa, M., Spyridopoulous, I., & Dimmeler, S. (2004). Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circulatory Research, 94, 768–775. https://doi.org/10.1161/01.RES.0000121104.05977.F3
- Halliwell, B. (2000). The antioxidant paradox. Lancet, 355, 1179–1180. https://doi.org/10.1016/S0140-6736(00)02075-4
- Halliwell, B. (2013). The antioxidant paradox: Less paradoxical now? British Journal of Clinical Pharmacology, 75, 637–644. https://doi.org/10.1111/j.1365-2125.2012.04272.x
- Harlev, A., Agarwal, A., Gunes, S. O., Shetty, A., & du Plessis, S. S. (2015). Smoking and male infertility: An evidence-based review. World Journal of Men's Health, 33, 143–160. https://doi.org/10.5534/wjmh.2015.33.3.143
- Henkel, R. (2010). ROS and sperm DNA integrity – Implications of male accessory gland infections. In A. Giwercman, H. Tournaye, L. Björndahl & W. Weidner (Eds), Clinical andrology (pp. 481–488). London: Informa Healthcare (incorporating Parthenon Publishing, Marcel Dekker, and Taylor & Francis Medical.
10.3109/9781841847474-37 Google Scholar
- Henkel, R. R. (2011). Leukocytes and oxidative stress: Dilemma for sperm function and male infertility. Asian Journal of Andrology, 13, 43–52. https://doi.org/10.1038/aja.2010.76
- Hosen, M. B., Islam, M. R., Begum, F., Kabir, Y., & Howlader, M. Z. (2015). Oxidative stress induced sperm DNA damage, a possible reason for male infertility. Iranian Journal of Reproductive Medicine, 13, 525–532.
- Iwasaki, A., & Gagnon, C. (1992). Formation of reactive oxygen species in spermatozoa of infertile patients. Fertility and Sterility, 57, 409–416. https://doi.org/10.1016/S0015-0282(16)54855-9
- Ji, B. T., Shu, X. O., Linet, M. S., Zheng, W., Wacholder, S., & Jin, F. (1997). Paternal cigarette smoking and the risk of childhood cancer among offspring of non-smoking mothers. Journal of National Cancer Institute, 89, 238–244. https://doi.org/10.1093/jnci/89.3.238
- Jones, P. A., & Taylor, S. M. (1980). Cellular differentiation, cytidine analogs, and DNA methylation. Cell, 20, 85–93. https://doi.org/10.1016/0092-8674(80)90237-8
- Kaneda, M., Okano, M., Hata, K., Sado, T., Tsujimoto, N., & Sasaki, H. (2004). Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature, 429, 900–903. https://doi.org/10.1038/nature02633
- Kawanishi, S., & Oikawa, S. (2004). Mechanism of telomere shortening by oxidative stress. Annals of New York Academy of Sciences, 1019, 278–284. https://doi.org/10.1196/annals.1297.047
- Klungland, A., & Bjelland, S. (2007). Oxidative damage to purines in DNA: Role of mammalian Ogg1. DNA Repair (Amsterdam), 6, 481–488. https://doi.org/10.1016/j.dnarep.2006.10.012
- Koppers, A., De luliis, G., Finnie, J., McLaughlin, E., & Aitken, R. (2008). Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. Journal of Clinical Endocrinology and Metabolism, 93, 3199–3207. https://doi.org/10.1210/jc.2007-2616
- Kumar, R., Venkatesh, S., Kumar, M., Tanwar, M., Shasmsi, M. B., & Dada, R. (2009). Oxidative stress and sperm mitochondrial DNA mutation in idiopathic oligoasthenozoospermic men. Indian Journal of Biochemistry and Biophysics, 46, 172–177.
- Lafuente, R., Bosch-Rue, E., Ribas-Maynou, J., Alvarez, J., Brassesco, C., & Brassesco, M. (2017). Sperm telomere length in motile sperm selection techniques: A qFISH approach. Andrologia, 50, e12840.
- Lewis, S. E. (2015). Should sperm DNA fragmentation testing be included in the male infertility work-up? Reproductive Biomedicine Online, 31, 134–137. https://doi.org/10.1016/j.rbmo.2015.05.006
- Lewis, S. E., & Aitken, R. J. (2005). DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell and Tissue Research, 322, 33–41. https://doi.org/10.1007/s00441-005-1097-5
- Lewis, S. E., O'Connell, M., Stevenson, M., Thompson-Cree, L., & McClure, N. (2004). An algorithm to predict pregnancy in assisted reproduction. Human Reproduction, 19, 1385–1394. https://doi.org/10.1093/humrep/deh227
- Li, Z., Yang, J., & Huang, H. (2006). Oxidative stress induces H2AX phosphorylation in human spermatozoa. FEBS Letters, 580, 6161–6168. https://doi.org/10.1016/j.febslet.2006.10.016
- Liu, L., Blasco, M., Trimarchi, J., & Keefe, D. (2002). An essential role for functional telomeres in mouse germ cells during fertilization and early development. Developmental Biology, 249, 74–84. https://doi.org/10.1006/dbio.2002.0735
- Luczaj, W., & Skrzydlewska, E. (2003). DNA damage caused by lipid peroxidation products. Cell Molecular Biology Letters, 8, 391–413.
- Ma, D., Zhu, W., Hu, S., Yu, X., & Yang, Y. (2013). Association between oxidative stress and telomere length in Type 1 and Type 2 diabetic patients. Journal of Endocrinological Investigation, 36, 1032–1037.
- Mahfouz, R., Sharma, R., Sharma, D., Sabanegh, E., & Agarwal, A. (2009). Diagnostic value of the total antioxidant capacity (TAC) in human seminal plasma. Fertility and Sterility, 91, 805–811. https://doi.org/10.1016/j.fertnstert.2008.01.022
- Majzoub, A., & Agarwal, A. (2017). Antioxidant therapy in idiopathic oligoasthenoteratozoospermia. Indian Journal of Urology, 33, 207–214.
- Mayer, S., Brüderlein, S., Perner, S., Waibel, I., Holdenried, A., Ciloglu, N., … Möller, P. (2006). Sex-specific telomere length profiles and age-dependent erosion dynamics of individual chromosome arms in humans. Cytogenetic and Genome Research, 112, 194–201. https://doi.org/10.1159/000089870
- May-Panloup, P., Chretien, M. F., Savagner, F., Vasseur, C., Jean, M., Malthiery, Y., & Reynier, P. (2003). Increased sperm mitochondrial DNA content in male infertility. Human Reproduction, 18, 550–556. https://doi.org/10.1093/humrep/deg096
- Mishra, S., Kumar, R., Malhotra, N., Singh, N., & Dada, R. (2016). Mild oxidative stress is beneficial for sperm telomere length maintenance. World Journal of Methodology, 6, 163–170. https://doi.org/10.5662/wjm.v6.i2.163
- Mostafa, R. M., Nasrallah, Y. S., Hassan, M. M., Farraq, A. F., Majzoub, A., & Agarwal, A. (2017). The effect of cigarette smoking on human seminal parameters, sperm chromatin structure and condensation. Andrologia, 50, e12910.
- Muratori, M., Tamburrino, L., Marchiani, S., Cambi, M., Olivito, B., Azzari, C., … Baldi, E. (2015). Investigation on the origin of sperm DNA fragmentation: Role of apoptosis, immaturity, and oxidative stress. Molecular medicine, 21, 109–122.
- Nieschlag, E. (2010). Scope and Goals of Andrology. In E. Nieschlag, H. Behre & S. Nieschlag (Eds.), Andrology: Male reproductive health and dysfunction ( 3rd ed.). Heidelberg, Dordrecht, London, New York: Springer. Chapter 1, pp 1-10. https://doi.org/10.1007/978-3-540-78355-8
10.1007/978-3-540-78355-8_1 Google Scholar
- Oakes, C. C., La Salle, S., Smiraglia, D. J., Robaire, B., & Trasler, J. M. (2007). Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. Developmental Biology, 307, 368–379. https://doi.org/10.1016/j.ydbio.2007.05.002
- Olszewska, M., Barciszewska, M., Fraczek, M., Huleyuk, N., Chernykh, V., Zastavna, D., … Kurpisz, M. (2017). Global methylation status of sperm DNA in carriers of chromosome structural aberrations. Asian Journal of Andrology, 19, 117–124.
- Practice Committee of American Society for Reproductive Medicine. (2008). The clinical utility of sperm DNA integrity testing. Fertility and Sterility, 90, S178–S180.
- Practice Committee of the American Society for Reproductive Medicine. (2013). The clinical utility of sperm DNA integrity testing: A guideline. Fertility and Sterility, 299, 673–677.
- Rocca, M. S., Speltra, E., Menegazzo, M., Garolla, A., Foresta, C., & Ferlin, A. (2016). Sperm telomere length as a parameter of sperm quality in normozoospermic men. Human Reproduction, 36, 1158–1163. https://doi.org/10.1093/humrep/dew061
- Rodríguez, S., Goyanes, V., Segrelles, E., Blasco, M., Gosálvez, J., & Fernández, J. L. (2005). Critically short telomeres are associated with sperm DNA fragmentation. Fertility and Sterility, 84, 843–845. https://doi.org/10.1016/j.fertnstert.2005.05.014
- Rodriguez, I., Ody, C., Araki, K., Garcia, I., & Vassalli, P. (1997). An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO Journal, 16, 2262–2270. https://doi.org/10.1093/emboj/16.9.2262
- Rosenquist, T. A., Zharkov, D. O., & Grollman, A. P. (1997). Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proceedings of the National Academy of Sciences of the United States of America, 94, 7429–7434. https://doi.org/10.1073/pnas.94.14.7429
- Sakkas, D., Mariethoz, E., & St John, J. (1999). Abnormal sperm parameters in humans are indicative of an abortive apoptotic mechanism linked to the Fas-mediated pathway. Experimental and Cellular Research, 251, 350–355. https://doi.org/10.1006/excr.1999.4586
- Salas-Huetos, A., Bullo, M., & Salas-Salvado, J. (2017). Dietary patterns, foods and nutrients in male fertility parameters and fecundability: A systematic review of observational studies. Human Reproduction Update, 23, 371–389. https://doi.org/10.1093/humupd/dmx006
- Sawyer, D., Mercer, B., Wiklendt, A., & Aitken, R. (2003). Quantitative analysis of gene-specific DNA damage in human spermatozoa. Mutation Research, 529, 21–34. https://doi.org/10.1016/S0027-5107(03)00101-5
- Sawyer, D. E., Roman, S. D., & Aitken, R. J. (2001). Relative susceptibilities of mitochondrial and nuclear DNA to damage induced by hydrogen peroxide in two mouse germ cell lines. Redox Report, 6, 182–184. https://doi.org/10.1179/135100001101536157
- Shamsi, M., Dada, R., & Dinesh, V. (2012). Supraphysiological free radical levels and their pathogenesis in male infertility. Reproductive System in Sex Disorder, 1, 114.
- Shamsi, M., Kumar, R., Bhatt, A., Bamezai, R. N., Kumar, R., Gupta, N. P., … Dada, R. (2008). Mitochondrial DNA Mutations in etiopathogenesis of male infertility. Indian Journal of Urology, 24, 150–154.
- Sharma, R., Harlev, A., Agarwal, A., & Esteves, S. C. (2016). Cigarette smoking and semen quality: A new meta-analysis examining the effect of the 2010 World Health Organization laboratory methods for the examination of human semen. European Urology, 70, 635–645. https://doi.org/10.1016/j.eururo.2016.04.010
- Simon, L., Castillo, J., Oliva, R., & Lewis, S. E. (2011). Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reproductive Biomedicine Online, 23, 724–734. https://doi.org/10.1016/j.rbmo.2011.08.010
- Simon, L., Murphy, K., Shamsi, M. B., Liu, L., Emery, B., Aston, K. I., … Carrell, D. T. (2014). Paternal influence of sperm DNA integrity on early embryonic development. Human Reproduction, 29, 2402–2412. https://doi.org/10.1093/humrep/deu228
- Singh, A., & Agarwal, A. (2011). The role of sperm chromatin integrity and DNA damage on male infertility. Open Reproductive Science Journal, 11, 65–71.
- Smith, T. B., Dun, M. D., Smith, N. D., Curry, B. J., Connaughton, H. S., & Aitken, R. J. (2013). The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1. Journal of Cell Science, 126, 1488–1497. https://doi.org/10.1242/jcs.121657
- de Souza-Pinto, N. C., Hogue, B. A., & Bohr, V. A. (2001). DNA repair and aging in mouse liver: 8-oxodG glycosylase activity increase in mitochondrial but not in nuclear extracts. Free Radicals in Biology and Medicine, 30, 916–923. https://doi.org/10.1016/S0891-5849(01)00483-X
- Thilagavathi, J., Venkatesh, S., & Dada, R. (2013). Telomere length in reproduction. Andrologia, 45, 289–304. https://doi.org/10.1111/and.12008
- Tunc, O., & Tremellen, K. (2009). Oxidative DNA damage impairs global sperm DNA methylation in infertile men. Journal of Assisted Reproduction and Genetics, 26, 537–544. https://doi.org/10.1007/s10815-009-9346-2
- Turner, S., & Hartshorne, G. M. (2013). Telomere length in human pronuclei, oocytes, and spermatozoa. Molecular and Human Reproduction, 19, 510–518. https://doi.org/10.1093/molehr/gat021
- Turner, C., Killoran, C., Thomas, N. S., Rosenberg, M., Chuzhanova, N. A., & Biesecker, L. G. (2003). Human genetic disease caused by de novo mitochondrial-nuclear DNA transfer. Human Genetics, 112, 303–309.
- Urdinguio, R., Bayon, G., Dmitrijeva, M., Torano, E., Bravo, C., & Fernandez, A. (2015). Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility. Human Reproduction, 30, 1014–1028. https://doi.org/10.1093/humrep/dev053
- Venkatesh, S., Deecaraman, M., Kumar, R., Shamsi, M., & Dada, R. (2009). Role of reactive oxygen species in the pathogenesis of mitochondrial DNA (mtDNA) mutations in male infertility. Indian Journal of Medical Research, 129, 127–137.
- Venkatesh, S., Shamsi, M. B., Deka, D., Saxena, V., Kumar, R., & Dada, R. (2011). Clinical implications of oxidative stress & sperm DNA damage in normozoospermic infertile men. Indian Journal of Medical Research, 134, 396–398.
- Venkatesh, S., Thilagavathi, J., Kumar, K., Deka, D., Talwar, P., & Dada, R. (2011). Cytogenetic, Y chromosome microdeletion, sperm chromatin and oxidative stress analysis in male partners of couples experiencing recurrent spontaneous abortions. Archives of Gynecology and Obstetrics, 284, 1577–1584. https://doi.org/10.1007/s00404-011-1990-y
- Wang, Z., Rhee, D. B., Lu, J., Bohr, C. T., Zhou, F., Vallabhaneni, H., … Liu, Y. (2010). Characterization of oxidative guanine damage and repair in mammalian telomeres. PLoS Genetics, 6, e1000951.
- WHO. (2010). WHO laboratory manual for the examination and processing of human semen ( 5th ed.). Geneva, Switzerland: WHO.
- Yin, H., Xu, L., & Porter, N. A. (2011). Free radical lipid peroxidation: Mechanisms and analysis. Chemical Reviews, 111, 5944–5972. https://doi.org/10.1021/cr200084z
- Zalenskaya, I. A., Bradbury, E. M., & Zalensky, A. O. (2000). Chromatin structure of telomere domain in human sperm. Biochemistry and Biophysics Research Communications, 279, 213–218. https://doi.org/10.1006/bbrc.2000.3917
- Zhu, H., Fu, W., & Mattson, M. (2000). The catalytic subunit of telomerase protects neurons against amyloid beta-peptide-induced apoptosis. Journal of Neurochemistry, 75, 117–124.
- Zini, A. (2009). Are sperm chromatin and DNA defects relevant in the clinic? Systems in Biology and Reproductive Medicine, 57, 78–85.
- Zini, A., & Sigman, M. (2009). Are tests of sperm DNA damage clinically useful? Pros and cons. Journal of Andrology, 30, 219–229. https://doi.org/10.2164/jandrol.108.006908