Phase Stability and Reactions of Subducting CaCO3 under Upper Mantle Conditions
Weibin GUI
Center for High Pressure Science and Technology Advanced Research, Beijing, 100193 China
Search for more papers by this authorCorresponding Author
Kewei SHEN
Center for High Pressure Science and Technology Advanced Research, Beijing, 100193 China
Corresponding authors. E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Jin LIU
Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei, 066004 China
Corresponding authors. E-mail: [email protected]; [email protected]Search for more papers by this authorWeibin GUI
Center for High Pressure Science and Technology Advanced Research, Beijing, 100193 China
Search for more papers by this authorCorresponding Author
Kewei SHEN
Center for High Pressure Science and Technology Advanced Research, Beijing, 100193 China
Corresponding authors. E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Jin LIU
Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei, 066004 China
Corresponding authors. E-mail: [email protected]; [email protected]Search for more papers by this authorAbout the first author:
GUI Weibin, male, born in 1993 in Laizhou, Shandong Province, China. Ph.D. candidate in high-pressure geochemistry at the Center for High Pressure Science and Technology Advanced Research. He is currently interested in the geochemical behavior of carbonates and hydrous minerals under high pressure and temperature conditions. E-mail: [email protected].
About the corresponding authors:
SHEN Kewei, female, born in 1993 in Xingtai, Hebei Province, China. Postdoctoral researcher at the Center for High Pressure Science and Technology Advanced Research. Her research interests focus on the physics and chemistry of minerals and rocks under high-pressure-temperature conditions. E-mail: [email protected].
LIU Jin, male, born in 1984 in Jiangsu Province, China, Ph.D.; professor of mineral physics at Yanshan University. He has been focused on the physical and chemical properties of planetary materials under extreme conditions since 2007. E-mail: [email protected].
Abstract
CaCO3 is an important component of marine sediments and one of the major deep-carbon carriers at subduction zones. Some subducted CaCO3 can be dissolved in subduction fluids and recycled back to the surface via arc volcanoes degassing. At the same time, there still remain large amounts of CaCO3 and its reaction products, which could be further transported into Earth's deep interior. These internal processes link atmosphere, hydrosphere and biosphere with the deep solid Earth, modifying the environments of our planet. In this review, we summarize current understanding from high pressure-temperature experiments and field petrological observations on the physical and chemical properties of CaCO3. In particular, the phase stability and reactions of CaCO3 largely control the migration and reservation of oxidized carbon in subducting slabs. Finally, we present several critical but unsolved questions on CaCO3 subducting in the deep mantle.
References
- Baker, E.H., 1962. The calcium oxide–carbon dioxide system in the pressure range 1–300 atmospheres. Journal of the Chemical Society, 165: 464–470.
- Bayarjargal, L., Shumilova, T.G., Friedrich, A., and Winkler, B., 2010. Diamond formation from CaCO3 at high pressure and temperature. European Journal of Mineralogy, 22(1): 29–34.
- Bayarjargal, L., Fruhner, C.J., Schrodt, N., and Winkler, B., 2018. CaCO3 phase diagram studied with Raman spectroscopy at pressures up to 50 GPa and high temperatures and DFT modeling. Physics of the Earth and Planetary Interiors, 281: 31–45.
- Berner, R.A., and Honjo, S., 1981. Pelagic sedimentation of aragonite: Its geochemical significance. Science, 211(4485): 940–942.
- Bröll, D., Kaul, C., Krämer, A., Krammer, P., Richter, T., Jung, M., Vogel, H., and Zehner, P., 1999. Chemistry in supercritical water. Angewandte Chemie International Edition, 38(20): 2998–3014.
10.1002/(SICI)1521-3773(19991018)38:20<2998::AID-ANIE2998>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- Buob, A., Luth, R.W., Schmidt, M.W., and Ulmer, P., 2006. Experiments on CaCO3–MgCO3 solid solutions at high pressure and temperature. American Mineralogist, 91(2–3): 435–440.
- Caciagli, N.C., and Manning, C.E., 2003. The solubility of calcite in water at 6–16 kbar and 500–800°C. Contributions to Mineralogy and Petrology, 146(3): 275–285.
- Chen, C., Förster, M.W., Foley, S.F., and Liu, Y., 2021. Massive carbon storage in convergent margins initiated by subduction of limestone. Nature Communications, 12(1): 4463.
- Cölfen, H., and Antonietti, M., 2005. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angewandte Chemie International Edition, 44(35): 5576–5591.
- Dasgupta, R., and Hirschmann, M.M., 2010. The deep carbon cycle and melting in Earth's interior. Earth and Planetary Science Letters, 298(1–2): 1–13.
- Dasgupta, R., Hirschmann, M.M., and Withers, A.C., 2004. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth and Planetary Science Letters, 227(1–2): 73–85.
- De Corte, K., Korsakov, A., Taylor, W.R., Cartigny, P., Ader, M., and De Paepe, P., 2000. Diamond growth during ultrahigh-pressure metamorphism of the Kokchetav Massif, northern Kazakhstan. Island Arc, 9(3): 428–438.
- Deer, W.A., Howie, R.A., and Zussman, J., 2013. An introduction to the rock-forming minerals. London: The Mineralogical Society.
10.1180/DHZ Google Scholar
- Dorfman, S.M., Badro, J., Nabiei, F., Prakapenka, V.B., Cantoni, M., and Gillet, P., 2018. Carbonate stability in the reduced lower mantle. Earth and Planetary Science Letters, 489: 84–91.
- Dove, M.T., and Powell, B.M., 1989. Neutron diffraction study of the tricritical orientational order/disorder phase transition in calcite at 1260 K. Physics and Chemistry of Minerals, 16(5): 503–507.
- Dunne, J.P., Hales, B., and Toggweiler, J.R., 2012. Global calcite cycling constrained by sediment preservation controls. Global Biogeochemical Cycles, 26(3): GB3023.
- Durand, C., Baumgartner, L.P., and Marquer, D., 2015. Low melting temperature for calcite at 1000 bars on the join CaCO3-H2O—Some geological implications. Terra Nova, 27(5): 364–369.
- Ellis, A.J., 1959. The solubility of calcite in carbon dioxide solutions. American Journal of Science, 257(5): 354–365.
- Etiope, G., and Sherwood Lollar, B., 2013. Abiotic methane on Earth. Reviews of Geophysics, 51(2): 276–299.
- Facq, S., Daniel, I., Montagnac, G., Cardon, H., and Sverjensky, D.A., 2016. Carbon speciation in saline solutions in equilibrium with aragonite at high pressure. Chemical Geology, 431: 44–53.
- Farsang, S., Louvel, M., Zhao, C., Mezouar, M., Rosa, A.D., Widmer, R.N., Feng, X., Liu, J., and Redfern, S.A.T., 2021. Deep carbon cycle constrained by carbonate solubility. Nature Communications, 12(1): 1–9.
- Fein, J.B., and Walther, J.V., 1987. Calcite solubility in supercritical CO2–H2O fluids. Geochimica et Cosmochimica Acta, 51(6): 1665–1673.
- Frezzotti, M.L., Selverstone, J., Sharp, Z.D., and Compagnoni, R., 2011. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nature Geoscience, 4 (10): 703–706.
- Galvez, M.E., Beyssac, O., Martinez, I., Benzerara, K., Chaduteau, C., Malvoisin, B., and Malavieille, J., 2013. Graphite formation by carbonate reduction during subduction. Nature Geoscience, 6(6): 473–477.
- Gavryushkin, P.N., Martirosyan, N.S., Inerbaev, T.M., Popov, Z.I., Rashchenko, S.V., Likhacheva, A.Yu., Lobanov, S.S., Goncharov, A.F., Prakapenka, V.B., and Litasov, K.D., 2017. Aragonite-II and CaCO3-VII: New high-pressure, high-temperature polymorphs of CaCO3. Crystal Growth & Design, 17(12): 6291–6296.
- Hammouda, T., 2003. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth and Planetary Science Letters, 214(1–2): 357–368.
- Hayes, C.T., Costa, K.M., Anderson, R.F., Calvo, E., Chase, Z., Demina, L.L., Dutay, J.C., German, C.R., Heimbürger-Boavida, L.E., Jaccard, S.L., Jacobel, A., Kohfeld, K.E., Kravchishina, M.D., Lippold, J., Mekik, F., Missiaen, L., Pavia, F.J., Paytan, A., Pedrosa-Pamies, R., Petrova, M.V., Rahman, S., Robinson, L.F., Roy-Barman, M., Sanchez-Vidal, A., Shiller, A., Tagliabue, A., Tessin, A.C., van Hulten, M., and Zhang, J., 2021. Global ocean sediment composition and burial flux in the deep sea. Global Biogeochemical Cycles, 35 (4): e2020GB006769.
- Holloway, J.R., 1984. Graphite–CH4–H2O–CO2 equilibria at low-grade metamorphic conditions. Geology, 12(8): 455.
- Hou, M., Zhang, Q., Tao, R., Liu, H., Kono, Y., Mao, H., Yang, W., Chen, B., and Fei, Y., 2019. Temperature-induced amorphization in CaCO3 at high pressure and implications for recycled CaCO3 in subduction zones. Nature Communications, 10(1): 1963.
- Irving, A.J., and Wyllie, P.J., 1975. Subsolidus and melting relationships for calcite, magnesite and the join CaCO3–MgCO3 36 kb. Geochimica et Cosmochimica Acta, 39(1): 35–53.
- Ishizawa, N., Setoguchi, H., and Yanagisawa, K., 2013. Structural evolution of calcite at high temperatures: Phase V unveiled. Scientific Reports, 3(1): 2832.
- Ivanov, B.A., and Deutsch, A., 2002. The phase diagram of CaCO3 in relation to shock compression and decomposition. Physics of the Earth and Planetary Interiors, 129(1–2): 131–143.
- Janjuhah, H.T., Sanjuan, J., Alqudah, M., and Salah, M.K., 2021. Biostratigraphy, depositional and diagenetic processes in carbonate rocks from southern Lebanon: Impact on porosity and permeability. Acta Geologica Sinica (English Edition), 95 (5): 1668–1683.
- Kato, T., Enami, M., and Zhai, M., 1997. Ultra-high-pressure (UHP) marble and eclogite in the Su–Lu UHP terrane, eastern China. Journal of Metamorphic Geology, 15(2): 169–182.
- Kawamoto, T., Yoshikawa, M., Kumagai, Y., Mirabueno, M.H.T., Okuno, M., and Kobayashi, T., 2013. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. Proceedings of the National Academy of Sciences, 110(24): 9663–9668.
- Kelemen, P.B., and Manning, C.E., 2015. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proceedings of the National Academy of Sciences, 112 (30): E3997–E4006.
- Keshav, S., and Gudfinnsson, G.H., 2013. Silicate liquid-carbonatite liquid transition along the melting curve of model, vapor-saturated peridotite in the system CaO–MgO–Al2O3–SiO2–CO2 from 1.1 to 2 GPa. Journal of Geophysical Research: Solid Earth, 118(7): 3341–3353.
- Korsakov, A.V., and Hermann, J., 2006. Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth and Planetary Science Letters, 241(1–2): 104–118.
- Kushiro, I., 1975. Carbonate–silicate reactions at high pressures and possible presence of dolomite and magnesite in the upper mantle. Earth and Planetary Science Letters, 28(2): 116–120.
- Lee, C.T.A., Jiang, H., Dasgupta, R., and Torres, M., 2019. A framework for understanding whole-Earth carbon cycling. In: B.N. Orcutt, I. Daniel, and R. Dasgupta (eds.), Deep Carbon: Past to Present. Cambridge: Cambridge University Press, 313–357.
- Li, Z., Li, J., Lange, R., Liu, J., and Militzer, B., 2017. Determination of calcium carbonate and sodium carbonate melting curves up to Earth's transition zone pressures with implications for the deep carbon cycle. Earth and Planetary Science Letters, 457: 395–402.
- Liu, F., Yang, J., Lian, D., Xiong, F., and Wu, W., 2020. Diamonds and other unusual minerals in global ophiolites. Acta Geologica Sinica, 94(9): 2588–2605 (in Chinese with English abstract).
- Liu, J., Hu, Q., Kim, D.Y., Wu, Z., Wang, W., Xiao, Y., Chow, P., Meng, Y., Prakapenka, V.B., Mao, H.K., and Mao, W.L., 2017. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones. Nature, 551(7681): 494–497.
- Liu, J., Wang, C., Lü, C., Su, X., Liu, Y., Tang, R., Chen, J., Hu, Q., Mao, H.K., and Mao, W.L., 2021. Evidence for oxygenation of Fe-Mg oxides at mid-mantle conditions and the rise of deep oxygen. National Science Review, 8(4): nwaa096.
- Liu, S.A., Qu, Y.R., Wang, Z.Z., Li, M.L., Yang, C., and Li, S.G., 2022. The fate of subducting carbon tracked by Mg and Zn isotopes: A review and new perspectives. Earth-Science Reviews, 228: 104010.
- Liu, Y., He, D., Gao, C., Foley, S., Gao, S., Hu, Z., Zong, K., and Chen, H., 2015. First direct evidence of sedimentary carbonate recycling in subduction-related xenoliths. Scientific Reports, 5(1): 11547.
- Liu, Y., and Zhang, L., 2022. Fluid immiscibility and evolution in subduction zones. Acta Geologica Sinica, 96(12): 4104–4130 (in Chinese with English abstract).
- Lü, M., Dorfman, S.M., Badro, J., Borensztajn, S., Greenberg, E., and Prakapenka, V.B., 2021. Reversal of carbonate-silicate cation exchange in cold slabs in Earth's lower mantle. Nature Communications, 12(1): 1712.
- Mao, H., and Mao, W.L., 2020. Key problems of the four-dimensional Earth system. Matter and Radiation at Extremes, 5(3): 038102.
- Martirosyan, N.S., Yoshino, T., Shatskiy, A., Chanyshev, A.D., and Litasov, K.D., 2016. The CaCO3 interaction: Kinetic approach for carbonate subduction to the deep Earth's mantle. Physics of the Earth and Planetary Interiors, 259: 1–9.
- McCollom, T.M., 2016. Abiotic methane formation during experimental serpentinization of olivine. Proceedings of the National Academy of Sciences, 113(49): 13965–13970.
- Merlini, M., Hanfland, M., and Crichton, W.A., 2012. CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: Possible host structures for carbon in the Earth's mantle. Earth and Planetary Science Letters, 333–334: 265–271.
- Merrill, L., and Bassett, W.A., 1975. The crystal structure of CaCO3(II), a high-pressure metastable phase of calcium carbonate. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 31(2): 343–349.
10.1107/S0567740875002774 Google Scholar
- Newton, R.C., and Manning, C.E., 2002. Experimental determination of calcite solubility in H2O–NaCl solutions at deep crust/upper mantle pressures and temperatures: Implications for metasomatic processes in shear zones. American Mineralogist, 87(10): 1401–1409.
- Novella, D., Keshav, S., Gudfinnsson, G.H., and Ghosh, S., 2014. Melting phase relations of model carbonated peridotite from 2 to 3 GPa in the system CaO–MgO–Al2O3–SiO2–CO2 and further indication of possible unmixing between carbonatite and silicate liquids. Journal of Geophysical Research: Solid Earth, 119(4): 2780–2800.
- Ogasawara, Y., Ohta, M., Fukasawa, K., Katayama, I., and Maruyama, S., 2000. Diamond-bearing and diamond-free metacarbonate rocks from Kumdy-Kol in the Kokchetav Massif, northern Kazakhstan. Island Arc, 9(3): 400–416.
- Ono, S., 2005. Post-aragonite phase transformation in CaCO3 at 40 GPa. American Mineralogist, 90(4): 667–671.
- Peng, W., Zhang, L., Tumiati, S., Vitale Brovarone, A., Hu, H., Cai, Y., and Shen, T., 2021. Abiotic methane generation through reduction of serpentinite-hosted dolomite: Implications for carbon mobility in subduction zones. Geochimica et Cosmochimica Acta, 311: 119–140.
- Plank, T., and Manning, C.E., 2019. Subducting carbon. Nature, 574(7778): 343–352.
- Poli, S., 2015. Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids. Nature Geoscience, 8(8): 633–636.
- Pytkowicz, R.M., and Conners, D.N., 1964. High pressure solubility of calcium carbonate in seawater. Science, 144 (3620): 840–841.
- Rohrbach, A., and Schmidt, M.W., 2011. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling. Nature, 472(7342): 209–212.
- Salje, E., and Viswanathan, K., 1976. The phase diagram calcite-aragonite as derived from the crystallographic properties. Contributions to Mineralogy and Petrology, 55(1): 55–67.
- Schmidt, M.W., and Poli, S., 2014. Devolatilization during Subduction. Treatise on Geochemistry, 4: 669–701.
- Scott, H.P., Hemley, R.J., Mao, H., Herschbach, D.R., Fried, L.E., Howard, W.M., and Bastea, S., 2004. Generation of methane in the Earth's mantle: In situ high pressure-temperature measurements of carbonate reduction. Proceedings of the National Academy of Sciences, 101(39): 14023–14026.
- Segnit, E.R., Holland, H.D., and Biscardi, C.J., 1962. The solubility of calcite in aqueous solutions-I: The solubility of calcite in water between 75° and 200° at CO2 pressures up to 60 atm. Geochimica et Cosmochimica Acta, 26(12): 1301–1331.
- Seto, Y., Hamane, D., Nagai, T., and Fujino, K., 2008. Fate of carbonates within oceanic plates subducted to the lower mantle, and a possible mechanism of diamond formation. Physics and Chemistry of Minerals, 35(4): 223–229.
- Shatskiy, A., Sharygin, I.S., Litasov, K.D., Borzdov, Y.M., Palyanov, Y.N., and Ohtani, E., 2013. New experimental data on phase relations for the system Na2CO3–CaCO3 at 6 GPa and 900°C. American Mineralogist, 98(11–12): 2164–2171.
- Shatskiy, A., Borzdov, Y.M., Litasov, K.D., Sharygin, I.S., Palyanov, Y.N., and Ohtani, E., 2015. Phase relationships in the system K2CO3–CaCO3 at 6 GPa and 900–1450°C. American Mineralogist, 100(1): 223–232.
- Suito, K., Namba, J., Horikawa, T., Taniguchi, Y., Sakurai, N., Kobayashi, M., Onodera, A., Shimomura, O., and Kikegawa, T., 2001. Phase relations of CaCO3 at high pressure and high temperature. American Mineralogist, 86(9): 997–1002.
- Sulpis, O., Agrawal, P., Wolthers, M., Munhoven, G., Walker, M., and Middelburg, J.J., 2022. Aragonite dissolution protects calcite at the seafloor. Nature Communications, 13(1): 1104.
- Tang, H., Guo, T., Wu, K., Liu, Z., Xu, J., Lu, B., and Wang, P., 2022. Reassessment of the distribution of mantle CO2 in the Bohai Sea, China: The perspective from the source and pathway system. Acta Geologica Sinica (English Edition), 96 (1): 337–347.
- Tao, R., and Fei, Y., 2021. Recycled calcium carbonate is an efficient oxidation agent under deep upper mantle conditions. Communications Earth & Environment, 2(1): 1–8.
10.1038/s43247-021-00116-8 Google Scholar
- Tao, R., Zhang, L., Tian, M., Zhu, J., Liu, X., Liu, J., Höfer, H.E., Stagno, V., and Fei, Y., 2018. Formation of abiotic hydrocarbon from reduction of carbonate in subduction zones: Constraints from petrological observation and experimental simulation. Geochimica et Cosmochimica Acta, 239: 390–408.
- Thomson, A.R., Walter, M.J., Kohn, S.C., and Brooker, R.A., 2016. Slab melting as a barrier to deep carbon subduction. Nature, 529(7584): 76–79.
- Tsuno, K., Dasgupta, R., Danielson, L., and Righter, K., 2012. Flux of carbonate melt from deeply subducted pelitic sediments: Geophysical and geochemical implications for the source of Central American volcanic arc. Geophysical Research Letters, 39(16): L16307.
- Uhlig, D., Wu, B., Berns, A.E., and Amelung, W., 2022. Magnesium stable isotopes as a potential geochemical tool in agronomy-Constraints and opportunities. Chemical Geology, 611: 121114.
- Vitale Brovarone, A., Martinez, I., Elmaleh, A., Compagnoni, R., Chaduteau, C., Ferraris, C., and Esteve, I., 2017. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps. Nature Communications, 8(1): 14134.
- Walker, J.C.G., Hays, P.B., and Kasting, J.F., 1981. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. Journal of Geophysical Research: Oceans, 86(C10): 9776–9782.
- Wang, X.F., Zhang, J., Wang, C., Zong, K., and Xu, H., 2022. Experimental constraint on Ca-rich carbonatite melt-peridotite interaction and implications for lithospheric mantle modification beneath the North China Craton. Journal of Geophysical Research: Solid Earth, 127(9): e2022JB024769.
- Wang, X., Zhu, W.B., and Zheng, Y.F., 2022. Geochemical constraints on the nature of Late Archean basaltic–andesitic magmatism in the North China Craton. Earth-Science Reviews, 230: 104065.
- Weidendorfer, D., Schmidt, M.W., and Mattsson, H.B., 2017. A common origin of carbonatite magmas. Geology, 45(6): 507–510.
- Weingärtner, H., and Franck, E.U., 2005. Supercritical water as a solvent. Angewandte Chemie International Edition, 44(18): 2672–2692.
- Wyllie, P.J., and Tuttle, O.F., 1960. The system CaO–CO2–H2O and the origin of carbonatites. Journal of Petrology, 1(1): 1–46.
- Yaxley, G.M., and Brey, G.P., 2004. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: Implications for petrogenesis of carbonatites. Contributions to Mineralogy and Petrology, 146(5): 606–619.
- Zhang, Z., Mao, Z., Liu, X., Zhang, Y., and Brodholt, J., 2018. Stability and reactions of CaCO3 polymorphs in the Earth's deep mantle. Journal of Geophysical Research: Solid Earth, 123(8): 6491–6500.
- Zhang, L., Ellis, D.J., Arculus, R.J., Jiang, W., and Wei, C., 2003. ‘Forbidden Zone’ subduction of sediments to 150 km depth—The reaction of dolomite to magnesite + aragonite in the UHPM metapelites from western Tianshan, China. Journal of Metamorphic Geology, 21(6): 523–529.
- Zhao, S., Poli, S., Schmidt, M.W., Rinaldi, M., and Tumiati, S., 2022. An experimental determination of the liquidus and a thermodynamic melt model in the CaCO3–MgCO3 binary, and modelling of carbonated mantle melting. Geochimica et Cosmochimica Acta, 336: 394–406.
- Zhao, X., Zheng, Z., Chen, J., Gao, Y., and Sun, J., 2020. High P-T calcite-aragonite phase transitions under hydrous and anhydrous conditions. Frontiers in Earth Science, 10: 907967.
- Zheng, Y.F., 2021. Metamorphism in subduction zones. In: S. Elias, and D. Alderton (eds.), Encyclopedia of Geology. Elsevier, 612–622.
10.1016/B978-0-08-102908-4.00020-5 Google Scholar
- Zheng, Y., Chen, R., Xu, Z., and Zhang, S., 2016. The transport of water in subduction zones. Science China Earth Sciences, 59(4): 651–682.
- Zhu, Y., and Ogasawara, Y., 2002. Carbon recycled into deep Earth: Evidence from dolomite dissociation in subduction-zone rocks. Geology, 30(10): 947–950.