Disaster victim identification: Stable isotope analysis and the identification of unknown decedents
Lesley A. Chesson MS
Defense POW/MIA Accounting Agency Laboratory, Joint Base Pearl Harbor-Hickam, Honolulu, Hawaii, USA
Search for more papers by this authorCorresponding Author
Gregory E. Berg PhD
Defense POW/MIA Accounting Agency Laboratory, Joint Base Pearl Harbor-Hickam, Honolulu, Hawaii, USA
Correspondence
Gregory E. Berg, Defense POW/MIA Accounting Agency Laboratory, Joint Base Pearl Harbor-Hickam, Honolulu, HI 96853, USA.
Email: [email protected]
Search for more papers by this authorMary Megyesi PhD
Defense POW/MIA Accounting Agency Laboratory, Joint Base Pearl Harbor-Hickam, Honolulu, Hawaii, USA
Search for more papers by this authorLesley A. Chesson MS
Defense POW/MIA Accounting Agency Laboratory, Joint Base Pearl Harbor-Hickam, Honolulu, Hawaii, USA
Search for more papers by this authorCorresponding Author
Gregory E. Berg PhD
Defense POW/MIA Accounting Agency Laboratory, Joint Base Pearl Harbor-Hickam, Honolulu, Hawaii, USA
Correspondence
Gregory E. Berg, Defense POW/MIA Accounting Agency Laboratory, Joint Base Pearl Harbor-Hickam, Honolulu, HI 96853, USA.
Email: [email protected]
Search for more papers by this authorMary Megyesi PhD
Defense POW/MIA Accounting Agency Laboratory, Joint Base Pearl Harbor-Hickam, Honolulu, Hawaii, USA
Search for more papers by this authorPresented in part at the 74th Annual Scientific Meeting of the American Academy of Forensic Sciences, February 21–25, 2023, in Seattle WA; and at the 75th Annual Scientific Meeting of the American Academy of Forensics Sciences, February 13–18, 2023, in Orlando, FL.
Abstract
Within the complex world of disaster victim identification, or DVI, forensic science practitioners use a variety of investigative techniques to work toward a common goal: identification of the decedents, bringing closure to the affected communities. Identification is a complex undertaking; the event (disaster) also can be extraordinarily complex, as it may be an acute event, or one that spans months or years. Compounding this time issue, remains may be heavily fragmented, dispersed, commingled, or otherwise disrupted by either the perpetrators or the disaster itself. To help solve these complexities, we explore the use of stable isotope analysis (SIA) in DVI events. SIA can be used with a variety of body tissues (hair, nail, bone, and teeth), and each represents different time depths in a decedent's life. Bone collagen and tooth enamel carbonate are useful to reconstruct an individual's diet and source water intakes, respectively, leading to likely population or geographic origin determinations. Additionally, the carbon and nitrogen isotopic signatures of bone collagen have calculated intraperson ranges. These facts allow investigators to determine likely origin of remains using isotopic data and can be used to link skeletal elements (to an individual), or perhaps more importantly, show that remains are not linked. Application of SIA can thus speed remains identification by eliminating individuals from short lists for identification, linking or decoupling remains, and reducing the need for some DNA testing. These strategies and hypothesis tests should commence early in the DVI process to achieve maximum effectiveness.
Supporting Information
Filename | Description |
---|---|
jfo15554-sup-0001-TableS1.xlsxExcel 2007 spreadsheet , 15.4 KB |
Table S1: |
jfo15554-sup-0002-TableS2.xlsxExcel 2007 spreadsheet , 40.7 KB |
Table S2: |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 INTERPOL. Disaster victim identification guide. 2023. Accessed 15 May 2024 https://www.interpol.int/content/download/589/file/18Y1344%20E%20DVI_Guide.pdf
- 2 OSAC Disaster Victim Identification Task Group. Standard for disaster victim identification. 2022. Accessed 15 May 2024 https://www.nist.gov/system/files/documents/2022/07/05/OSAC%202022-S-0022%20Standard%20for%20Disaster%20Victim%20Identification.OPEN%20COMMENT_STRP%20VERSION.pdf
- 3 AAFS Standards Board. Forensic anthropology in Disaster Victim Identification: Best Practice Recommendations for the Medicolegal Authority. 2018. Accessed 15 May 2024https://www.aafs.org/sites/default/files/media/documents/010_BPR_e01.pdf
- 4Ta'ala SC, Berg GE, Haden K. Blunt force cranial trauma in the Cambodian killing fields. J Forensic Sci. 2006; 51(5): 996–1001. https://doi.org/10.1111/j.1556-4029.2006.00219.x
- 5Fleischman J. Working with the remains in Cambodia: skeletal analysis and human rights after atrocity. Genocide Stud Int. 2016; 10(2): 121–130. https://doi.org/10.5038/1911-9933.10.2.1411
10.5038/1911-9933.10.2.1411 Google Scholar
- 6Byrd JH, Ross AH. Current standards in disaster victim identification. In: AH Ross, JH Byrd, editors. Methodological and technological advances in death investigations: application and case studies. London, U.K.: Academic Press; 2024. p. 325–331.
10.1016/B978-0-12-819394-5.00008-0 Google Scholar
- 7 Disaster Victim Identification (DVI). Accessed 7 Mar 2024.https://www.interpol.int/en/How-we-work/Forensics/Disaster-Victim-Identification-DVI.
- 8 United Nations. International Criminal Tribunal for the former Yugoslavia. Accessed 1 Feb 2024 https://www.icty.org
- 9 9/11 Memorial & Museum. Accessed 1 Feb 2024 https://www.911memorial.org.
- 10Bartelink EJ, Chesson LA, Tipple BJ, Hall S, Kramer RT. Multi-isotope approaches for region-of-origin predictions of undocumented border crossers from the US–Mexico border: biocultural perspectives on diet and travel history. In: RC Parra, SC Zapico, DH Ubelaker, editors. Forensic science and humanitarian action. Hoboken, NJ: Wiley; 2020. p. 369–384.
10.1002/9781119482062.ch24 Google Scholar
- 11Kramer RT, Bartelink EJ, Herrmann NP, Bataille CP, Spradley K. Application of stable isotopes and geostatistics to infer region of geographical origin for deceased undocumented Latin American migrants. In: RC Parra, SC Zapico, DH Ubelaker, editors. Forensic science and humanitarian action. Hoboken, NJ: Wiley; 2020. p. 425–440.
10.1002/9781119482062.ch27 Google Scholar
- 12Kramer R, Bartelink E. Childhood and adulthood residency prediction using strontium (87Sr/86Sr) and oxygen (δ18O) isotopes for unidentified deceased migrants recovered in southern Texas. Forensic Anthropology. 2022; 5(1): 25–45. https://doi.org/10.5744/fa.2020.0054
10.5744/fa.2020.0054 Google Scholar
- 13Ammer S, Kramer R, Bartelink E. Forensic isotope provenancing for undocumented border crosser human remains: application, overview, and case studies. In: AH Ross, JH Byrd, editors. Methodological and technological advances in death investigations. London, U.K.: Academic Press; 2024. p. 259–301.
10.1016/B978-0-12-819394-5.00013-4 Google Scholar
- 14Franklin D, Marks MK. The professional practice of forensic anthropology: contemporary developments and cross-disciplinary applications. WIREs Forensic Sci. 2022; 4(2):e1442. https://doi.org/10.1002/wfs2.1442
- 15Dahal A, McNevin D, Chikhani M, Ward J. An interdisciplinary forensic approach for human remains identification and missing persons investigations. WIREs Forensic Sci. 2023; 5(4):e1484. https://doi.org/10.1002/wfs2.1484
10.1002/wfs2.1484 Google Scholar
- 16Bartelink EJ, Chesson LA. Recent applications of isotope analysis to forensic anthropology. Forensic Sci Res. 2019; 4(1): 29–44. https://doi.org/10.1080/20961790.2018.1549527
- 17Chesson LA, Meier-Augenstein W, Berg GE, Bataille CP, Bartelink EJ, Richards MP. Basic principles of stable isotope analysis in humanitarian forensic science. In: RC Parra, SC Zapico, DH Ubelaker, editors. Forensic science and humanitarian action. Hoboken, NJ: Wiley; 2020. p. 285–310.
10.1002/9781119482062.ch20 Google Scholar
- 18Chesson LA, Tipple BJ, Ehleringer JR, Park T, Bartelink EJ. Forensic applications of isotope landscapes (“isoscapes”): a tool for predicting region-of-origin in forensic anthropology cases. In: CC Boyd, DC Boyd, editors. Forensic anthropology: theoretical framework and scientific basis. Chichester, U.K: John Wiley & Sons, Ltd; 2017. p. 127–148.
10.1002/9781119226529.ch8 Google Scholar
- 19Berg GE, Chesson LA, Yuryang J, Youngsoon S, Bartelink EJ. A large-scale evaluation of intraperson isotopic variation within human bone collagen and bioapatite. Forensic Sci Int. 2022; 336:111319. https://doi.org/10.1016/j.forsciint.2022.111319
- 20DeNiro MJ, Schoeninger MJ, Hastorf CA. Effect of heating on the stable carbon and nitrogen isotope ratios of bone collagen. J Archaeol Sci. 1985; 12(1): 1–7. https://doi.org/10.1016/0305-4403(85)90011-1
- 21Sarancha JJ, Eerkens JW, Hopkins CJ, Gonçalves D, Cunha E, Oliveira-Santos I, et al. The effects of burning on isotope ratio values in modern bone: importance of experimental design for forensic applications. Forensic Sci Int. 2022; 337:111370. https://doi.org/10.1016/j.forsciint.2022.111370
- 22Pestle WJ, Crowley BE, Weirauch MT. Quantifying inter-laboratory variability in stable isotope analysis of ancient skeletal remains. PLoS One. 2014; 9(7):e102844. https://doi.org/10.1371/journal.pone.0102844
- 23Moloughney VP, Pinder DM, Pestle WJ. Particle size matters: the effect of particle size on carbon and oxygen isotope composition of bone hydroxyapatite. Am J Phys Anthropol. 2020; 171(4): 718–724. https://doi.org/10.1002/ajpa.24006
- 24Snoeck C, Schulting RJ, Lee-Thorp JA, Lebon M, Zazzo A. Impact of heating conditions on the carbon and oxygen isotope composition of calcined bone. J Archaeol Sci. 2016; 65: 32–43. https://doi.org/10.1016/j.jas.2015.10.013
- 25Bartelink EJ, Berry R, Chesson LA. Stable isotopes and human provenancing. In: X Mallett, T Blythe, R Berry, editors. Advances in forensic human identification. Boca Raton, FL: CRC Press; 2014. p. 165–192.
10.1201/b16509-11 Google Scholar
- 26Reid RAG, Jans MME, Chesson LA, Taylor RJ, Berg GE. The influence of taphonomy on histological and isotopic analyses of treated and untreated buried modern human bone. J Archaeol Sci. 2024; 161:105901. https://doi.org/10.1016/j.jas.2023.105901
- 27Roberts P, Fernandes R, Craig OE, Larsen T, Lucquin A, Swift J, et al. Calling all archaeologists: guidelines for terminology, methodology, data handling, and reporting when undertaking and reviewing stable isotope applications in archaeology. Rapid Commun Mass Spectrom. 2018; 32(5): 361–372. https://doi.org/10.1002/rcm.8044
- 28Chesson LA, Beasley MM, Bartelink EJ, Jans MME, Berg GE. Using bone bioapatite yield for quality control in stable isotope analysis applications. J Archaeol Sci Rep. 2021; 35:102749. https://doi.org/10.1016/j.jasrep.2020.102749
- 29Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, et al. Global vegetation change through the Miocene/Pliocene boundary. Nature. 1997; 389: 153–158.
- 30Tipple BJ, Pagani M. The early origins of terrestrial C4 photosynthesis. Annu Rev Earth Planet Sci. 2007; 35(1): 435–461. https://doi.org/10.1146/annurev.earth.35.031306.140150
- 31Suits NS, Denning AS, Berry JA, Still CJ, Kaduk J, Miller JB, et al. Simulation of carbon isotope discrimination of the terrestrial biosphere. Global Biogeochem Cycles. 2005; 19(1):2003GB002141. https://doi.org/10.1029/2003GB002141
- 32Still CJ, Powell RL. Continental-scale distributions of vegetation stable carbon isotope ratios. In: JB West, GJ Bowen, TE Dawson, KP Tu, editors. Isoscapes: understanding movement, pattern, and process on earth through isotope mapping. Dordrecht, Netherlands: Springer Netherlands; 2010. p. 179–193.
- 33Bird MI, Crabtree SA, Haig J, Ulm S, Wurster CM. A global carbon and nitrogen isotope perspective on modern and ancient human diet. Proc Natl Acad Sci USA. 2021; 118(19):e2024642118. https://doi.org/10.1073/pnas.2024642118
- 34Jahren AH, Kraft RA. Carbon and nitrogen stable isotopes in fast food: signatures of corn and confinement. Proc Natl Acad Sci USA. 2008; 105(46): 17855–17860. https://doi.org/10.1073/pnas.0809870105
- 35Chesson L, Ehleringer J, Cerling T. American fast food isn't all corn-based. Proc Natl Acad Sci USA. 2009; 106(6): E8. https://doi.org/10.1073/pnas.0811787106
- 36Jahren H, Kraft R. Reply to Chesson et al.: carbon stable isotopes in beef differ distinctly between corporations. Proc Natl Acad Sci USA. 2009; 106(6):E9. https://doi.org/10.1073/pnas.0812302106
- 37DeNiro MJ, Epstein S. Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta. 1978; 42(5): 495–506. https://doi.org/10.1016/0016-7037(78)90199-0
- 38Post DM. Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology. 2002; 83(3): 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
- 39Ellam R. You are what you eat … plus a few per mil. Isotopes: a very short introduction. New York, NY: Oxford University Press; 2016. p. 17–27.
10.1093/actrade/9780198723622.001.0001 Google Scholar
- 40Nakamura K, Schoeller DA, Winkler FJ, Schmidt H-L. Geographical variations in the carbon isotope composition of the diet and hair in contemporary man. Biol Mass Spectrom. 1982; 9(9): 390–394. https://doi.org/10.1002/bms.1200090906
- 41Mützel Rauch E, Lehn C, Peschel O, Hölzl S, Roßmann A. Assignment of unknown persons to their geographical origin by determination of stable isotopes in hair samples. Int J Legal Med. 2009; 123(1): 35–40. https://doi.org/10.1007/s00414-008-0286-7
- 42Valenzuela LO, Chesson LA, Bowen GJ, Cerling TE, Ehleringer JR. Dietary heterogeneity among Western industrialized countries reflected in the stable isotope ratios of human hair. PLoS One. 2012; 7(3):e34234. https://doi.org/10.1371/journal.pone.0034234
- 43Hülsemann F, Lehn C, Schneider S, Jackson G, Hill S, Rossmann A, et al. Global spatial distributions of nitrogen and carbon stable isotope ratios of modern human hair. Rapid Commun Mass Spectrom. 2015; 29(22): 2111–2121. https://doi.org/10.1002/rcm.7370
- 44Lehn C, Rossmann A, Graw M. Provenancing of unidentified corpses by stable isotope techniques—presentation of case studies. Sci Justice. 2015; 55(1): 72–88. https://doi.org/10.1016/j.scijus.2014.10.006
- 45Bataille CP, Ammer STM, Bhuiyan S, Chartrand MMG, St-Jean G, Bowen GJ. Multi-isotopes in human hair: a tool to initiate cross-border collaboration in international cold-cases. PLoS One. 2022; 17(10):e0275902. https://doi.org/10.1371/journal.pone.0275902
- 46Nardoto GB, da Silva RJ, Schor T, Garavello MEPE, Silva MRF, Rodrigues LPF, et al. Mapping carbon and nitrogen isotopic composition of fingernails to demonstrate a rural–urban nutrition transition in the center-West, Northeast, and Amazon regions of Brazil. Am J Phys Anthropol. 2020; 172(4): 650–663. https://doi.org/10.1002/ajpa.24078
- 47Nardoto GB, Murrieta RSS, Prates LEG, Adams C, Garavello MEPE, Schor T, et al. Frozen chicken for wild fish: nutritional transition in the Brazilian Amazon region determined by carbon and nitrogen stable isotope ratios in fingernails. Am J Hum Biol. 2011; 23(5): 642–650. https://doi.org/10.1002/ajhb.21192
- 48Nardoto GB, Silva S, Kendall C, Ehleringer JR, Chesson LA, Ferraz ESB, et al. Geographical patterns of human diet derived from stable-isotope analysis of fingernails. Am J Phys Anthropol. 2006; 131(1): 137–146. https://doi.org/10.1002/ajpa.20409
- 49Bartelink EJ, Berg GE, Beasley MM, Chesson LA. Application of stable isotope forensics for predicting region of origin of human remains from past wars and conflicts. Ann Anthropol Pract. 2014; 38(1): 124–136. https://doi.org/10.1111/napa.12047
10.1111/napa.12047 Google Scholar
- 50Regan LA. Isotopic determination of region of origin in modern peoples: applications for identification of U.S. war-dead from the Vietnam conflict [dissertation]. Gainesville, FL: University of Florida; 2006.
- 51DeNiro MJ, Epstein S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta. 1981; 45(3): 341–351. https://doi.org/10.1016/0016-7037(81)90244-1
- 52Robbins CT, Felicetti LA, Sponheimer M. The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds. Oecologia. 2005; 144(4): 534–540. https://doi.org/10.1007/s00442-005-0021-8
- 53Robbins CT, Felicetti LA, Florin ST. The impact of protein quality on stable nitrogen isotope ratio discrimination and assimilated diet estimation. Oecologia. 2010; 162(3): 571–579. https://doi.org/10.1007/s00442-009-1485-8
- 54Ehleringer JR, Chesson LA, Valenzuela LO, Tipple BJ, Martinelli LA. Stable isotopes trace the truth: from adulterated foods to crime scenes. Elements. 2015; 11(4): 259–264. https://doi.org/10.2113/gselements.11.4.259
- 55Xi X. A review of water isotopes in atmospheric general circulation models: recent advances and future prospects. Int J Atmos Sci. 2014; 2014: 1–16. https://doi.org/10.1155/2014/250920
10.1155/2014/250920 Google Scholar
- 56Bowen GJ, Ehleringer JR, Chesson LA, Stange E, Cerling TE. Stable isotope ratios of tap water in the contiguous United States. Water Resour Res. 2007; 43(3):W03419. https://doi.org/10.1029/2006WR005186
- 57Meier-Augenstein W, Kemp HF. Stable isotope analysis: hair and nails. In: A Jamieson, A Moenssens, editors. Wiley encyclopedia of forensic science. Chichester, U.K: John Wiley & Sons, Ltd; 2012.
10.1002/9780470061589.fsa1043 Google Scholar
- 58Ehleringer JR, Bowen GJ, Chesson LA, West AG, Podlesak DW, Cerling TE. Hydrogen and oxygen isotope ratios in human hair are related to geography. Proc Natl Acad Sci USA. 2008; 105(8): 2788–2793. https://doi.org/10.1073/pnas.0712228105
- 59Meier-Augenstein W, Kemp HF. Stable isotope analysis: bone and teeth. In: A Jamieson, A Moenssens, editors. Wiley encyclopedia of forensic science. Chichester, U.K: John Wiley & Sons, Ltd; 2012.
10.1002/9780470061589.fsa1042 Google Scholar
- 60Hedges REM, Clement JG, Thomas CDL, O'Connell TC. Collagen turnover in the adult femoral mid-shaft: modeled from anthropogenic radiocarbon tracer measurements. Am J Phys Anthropol. 2007; 133(2): 808–816. https://doi.org/10.1002/ajpa.20598
- 61Ubelaker DH, Plens CR, Soriano EP, Diniz MV, De Almeida JE, Junior ED, et al. Lag time of modern bomb-pulse radiocarbon in human bone tissues: New data from Brazil. Forensic Sci Int. 2022; 331:111143. https://doi.org/10.1016/j.forsciint.2021.111143
- 62Quinn RL. Bomb pulse 14C evidence for consistent remodeling rates of cortical femur collagen in middle-late adulthood. Am J Biol Anthropol. 2024; 183(4):e24887. https://doi.org/10.1002/ajpa.24887
- 63AlQahtani SJ, Liversidge H, Hector M. Atlas of tooth development and eruption. 2009. Accessed 15 May 2024 https://atlas.dentistry.qmul.ac.uk/
- 64Bowen GJ, Ehleringer JR, Chesson LA, Thompson AH, Podlesak DW, Cerling TE. Dietary and physiological controls on the hydrogen and oxygen isotope ratios of hair from mid-20th century indigenous populations. Am J Phys Anthropol. 2009; 139(4): 494–504. https://doi.org/10.1002/ajpa.21008
- 65Thompson AH, Chesson LA, Podlesak DW, Bowen GJ, Cerling TE, Ehleringer JR. Stable isotope analysis of modern human hair collected from Asia (China, India, Mongolia, and Pakistan). Am J Phys Anthropol. 2010; 141(3): 440–451. https://doi.org/10.1002/ajpa.21162
- 66Daux V, Lécuyer C, Héran M-A, Amiot R, Simon L, Fourel F, et al. Oxygen isotope fractionation between human phosphate and water revisited. J Hum Evol. 2008; 55(6): 1138–1147. https://doi.org/10.1016/j.jhevol.2008.06.006
- 67Pollard AM, Pellegrini M, Lee-Thorp JA. Technical note: some observations on the conversion of dental enamel δ18Op values to δ18Ow to determine human mobility. Am J Phys Anthropol. 2011; 145(3): 499–504. https://doi.org/10.1002/ajpa.21524
- 68Chenery CA, Pashley V, Lamb AL, Sloane HJ, Evans JA. The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite. Rapid Commun Mass Spectrom. 2012; 26(3): 309–319. https://doi.org/10.1002/rcm.5331
- 69Ueda M, Bell LS. Assessing the predictability of existing water-to-enamel geolocation models against known human teeth. Sci Rep. 2021; 11(1): 15645. https://doi.org/10.1038/s41598-021-95153-w
- 70Berg GE, Kenyhercz MW. IsoLocate. 2017. Accessed 6 May 2024 https://anthropologyapps.shinyapps.io/IsoLocate/
- 71Berg GE, Kenyhercz MW. Introducing human mandible identification [(hu)MANid]: a free, web-based GUI to classify human mandibles. J Forensic Sci. 2017; 62(6): 1592–1598. https://doi.org/10.1111/1556-4029.13479
- 72Ousley SD, Jantz RL. FORDISC 3 and statistical methods for sex and ancestry estimation. In: D Dirkmaat, editor. A companion to forensic anthropology. West Sussex, U.K.: Wiley-Blackwell; 2012. p. 311–329.
10.1002/9781118255377.ch15 Google Scholar
- 73Go MC, Keyes VA, Doman JH, Grow KM, Hale AR, Nagengast-Stevens E, et al. The Korean war identification project: 30 years of expanding scope and complexity in the accounting of American war dead. WIREs Forensic Sci. 2023; 5(4):e1485. https://doi.org/10.1002/wfs2.1485
- 74Megyesi MES, Berg GE, Chesson LA. Segregation of individuals from large commingled assemblages via stable isotope ratio analysis of bone collagen. Proceedings of the 74th Annual Scientific Meeting American Academy of Forensic Sciences; 2022 Feb 21-25; Seattle, WA. Colorado Springs, CO: American Academy of Forensic Sciences; 2022. 34.
- 75Fahy GE, Deter C, Pitfield R, Miszkiewicz JJ, Mahoney P. Bone deep: variation in stable isotope ratios and histomorphometric measurements of bone remodeling within adult humans. J Archaeol Sci. 2017; 87: 10–16. https://doi.org/10.1016/j.jas.2017.09.009
- 76Obertová Z, Skrzypek G, Danišík M, Rankenburg K, Cummaudo M, Olivieri L, et al. Stable isotope provenance of unidentified deceased migrants—a pilot study. Biology. 2023; 12(11):1371. https://doi.org/10.3390/biology12111371
- 77Megyesi M. Challenges to identifications of the Cabanatuan prison camp cemetery remains. Forensic Anthropology. 2019; 2(2): 113–120. https://doi.org/10.5744/fa.2019.1014
10.5744/fa.2019.1014 Google Scholar
- 78Szpak P, Metcalfe JZ, Macdonald RA. Best practices for calibrating and reporting stable isotope measurements in archaeology. J Archaeol Sci Rep. 2017; 13: 609–616. https://doi.org/10.1016/j.jasrep.2017.05.007
- 79Meier-Augenstein W, Fraser I. Forensic isotope analysis leads to identification of a mutilated murder victim. Sci Justice. 2008; 48(3): 153–159. https://doi.org/10.1016/j.scijus.2007.10.010
- 80Kamenov GD, Kimmerle EH, Curtis JH, Norris D. Georeferencing a cold case victim with lead, strontium, carbon, and oxygen isotopes. Ann Anthropol Pract. 2014; 38(1): 137–154. https://doi.org/10.1111/napa.12048
10.1111/napa.12048 Google Scholar
- 81Font L, van der Peijl G, van Leuwen C, van Wetten I, Davies GR. Identification of the geographical place of origin of an unidentified individual by multi-isotope analysis. Sci Justice. 2015; 55(1): 34–42. https://doi.org/10.1016/j.scijus.2014.06.011
- 82Fauberteau AE, Chartrand MMG, Hu L, St-Jean G, Bataille CP. Investigating a cold case using high-resolution multi-isotope profiles in human hair. Forensic Chem. 2021; 22:100300. https://doi.org/10.1016/j.forc.2020.100300
- 83Chesson LA, Berg GE, Edwards AJ, Chau TH, Low L, Johnson DL, et al. Forensic application of isotope ratio mass spectrometry (IRMS) for human identification. Sci Justice. 2024; 64(1): 28–37. https://doi.org/10.1016/j.scijus.2023.11.005
- 84Bentley RA. Strontium isotopes from the earth to the archaeological skeleton: a review. J Archaeol Method Theory. 2006; 13(3): 135–187. https://doi.org/10.1007/s10816-006-9009-x
- 85Bartelink EJ, Berg GE, Chesson LA, Tipple BJ, Beasley MM, Prince-Buitenhuys JR, et al. Applications of stable isotope forensics for geolocating unidentified human remains from past conflict situations and large-scale humanitarian efforts. In: KE Latham, EJ Bartelink, M Finnegan, editors. New perspectives in forensic human skeletal identification. London, U.K./San Diego, CA: Elsevier/AP, Academic Press; 2018. p. 175–184.
10.1016/B978-0-12-805429-1.00015-6 Google Scholar
- 86Kimmerle EH, Kamenov GD. Linking identity with landscape: osteological and Sr-Pb isotopic methods for biogeoreference. In: GE Berg, SC Ta'ala, editors. Biological affinity in forensic identification of human skeletal remains: beyond black and white. Boca Raton, FL: CRC Press; 2015. p. 239–256.