Vasculogenesis – a New Strategy for Induction of Peripheral Neovascularization
Vaskulogenese – eine neue Strategie für die Induktion der peripheren Neovaskularisation
Alicja Jozkowicz
From the 1 Division of Vascular Surgery, Department of Surgery, University of Vienna, the 2 Department of Cell Biochemistry, Department of Molecular Genetics, Institute of Molecular Biology, Jagiellonian University, Krakow, Poland, and the 3 Ludwig Boltzmann Research Institute for Interdisciplinary Vascular Medicine, Vienna
Search for more papers by this authorJ. Dulak
From the 1 Division of Vascular Surgery, Department of Surgery, University of Vienna, the 2 Department of Cell Biochemistry, Department of Molecular Genetics, Institute of Molecular Biology, Jagiellonian University, Krakow, Poland, and the 3 Ludwig Boltzmann Research Institute for Interdisciplinary Vascular Medicine, Vienna
Search for more papers by this authorJ. Nanobashvili
From the 1 Division of Vascular Surgery, Department of Surgery, University of Vienna, the 2 Department of Cell Biochemistry, Department of Molecular Genetics, Institute of Molecular Biology, Jagiellonian University, Krakow, Poland, and the 3 Ludwig Boltzmann Research Institute for Interdisciplinary Vascular Medicine, Vienna
Search for more papers by this authorP. Polterauer
From the 1 Division of Vascular Surgery, Department of Surgery, University of Vienna, the 2 Department of Cell Biochemistry, Department of Molecular Genetics, Institute of Molecular Biology, Jagiellonian University, Krakow, Poland, and the 3 Ludwig Boltzmann Research Institute for Interdisciplinary Vascular Medicine, Vienna
Search for more papers by this authorI. Huk
From the 1 Division of Vascular Surgery, Department of Surgery, University of Vienna, the 2 Department of Cell Biochemistry, Department of Molecular Genetics, Institute of Molecular Biology, Jagiellonian University, Krakow, Poland, and the 3 Ludwig Boltzmann Research Institute for Interdisciplinary Vascular Medicine, Vienna
Search for more papers by this authorAlicja Jozkowicz
From the 1 Division of Vascular Surgery, Department of Surgery, University of Vienna, the 2 Department of Cell Biochemistry, Department of Molecular Genetics, Institute of Molecular Biology, Jagiellonian University, Krakow, Poland, and the 3 Ludwig Boltzmann Research Institute for Interdisciplinary Vascular Medicine, Vienna
Search for more papers by this authorJ. Dulak
From the 1 Division of Vascular Surgery, Department of Surgery, University of Vienna, the 2 Department of Cell Biochemistry, Department of Molecular Genetics, Institute of Molecular Biology, Jagiellonian University, Krakow, Poland, and the 3 Ludwig Boltzmann Research Institute for Interdisciplinary Vascular Medicine, Vienna
Search for more papers by this authorJ. Nanobashvili
From the 1 Division of Vascular Surgery, Department of Surgery, University of Vienna, the 2 Department of Cell Biochemistry, Department of Molecular Genetics, Institute of Molecular Biology, Jagiellonian University, Krakow, Poland, and the 3 Ludwig Boltzmann Research Institute for Interdisciplinary Vascular Medicine, Vienna
Search for more papers by this authorP. Polterauer
From the 1 Division of Vascular Surgery, Department of Surgery, University of Vienna, the 2 Department of Cell Biochemistry, Department of Molecular Genetics, Institute of Molecular Biology, Jagiellonian University, Krakow, Poland, and the 3 Ludwig Boltzmann Research Institute for Interdisciplinary Vascular Medicine, Vienna
Search for more papers by this authorI. Huk
From the 1 Division of Vascular Surgery, Department of Surgery, University of Vienna, the 2 Department of Cell Biochemistry, Department of Molecular Genetics, Institute of Molecular Biology, Jagiellonian University, Krakow, Poland, and the 3 Ludwig Boltzmann Research Institute for Interdisciplinary Vascular Medicine, Vienna
Search for more papers by this authorAbstract
enSummary: Background: New blood vessel development can be induced by supplementation with angiogenic growth factors. In some older diabetic or hypercholesterolaemic patients, however, endothelial cells are defective and cannot support angiogenesis. Methods: Endothelial progenitor cells (EPC) can help to overcome this limitation, providing a source of viable endothelial cells. Results: It has been demonstrated that EPC can improve neovascularization in ischaemic hind limb, accelerate blood flow in diabetic mice, and improve cardiac function. Conclusions: In this review, we will summarize the effects of EPC in the treatment for experimental peripheral ischaemia.
Abstract
deZusammenfassung: Grundlagen: Die Entwicklung neuer Blutgefäße kann durch die Gabe von angiogenetischen Wachstumsfaktoren induziert werden. Bei älteren Zuckerkranken oder Hypercholesterinämie-Patienten sind die Endothelzellen geschädigt und können die Angiogenese nicht unterstützen. Methodik: Mit Hilfe der endothelialen Progenitorzellen (EPC) können funktionsfähige Endothelzellen gebildet werden. Ergebnisse: Es konnte gezeigt werden, daß die EPC zu einer Neovaskularisation in ischämischen Extremitäten führt, den Blutfluß bei diabetischen Mäusen und die Herzfunktion verbessert. Schlußfolgerungen: In diesem Review diskutieren wir die Effekte der EPC bei der Behandlung experimenteller peripherer Ischämien.
References
- 1 Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM: Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999; 85: 221 – 228.
- 2 Asahara T, Murohara T, Sullivan A, Silver M, Van Der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM: Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964 – 967.
- 3 Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM: VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 1999; 18: 3964 – 3972.
- 4 Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T: Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 1981; 211: 1052 – 1054.
- 5 Blau HM, Brazelton TR, Weimann JM: The evolving concept of a stem cell: entity or function? Cell 2001; 105: 829 – 841.
- 6 Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, Rutten H, Fichtlscherer S, Martin H, Zeiher AM: HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via PI3-kinase/Akt cells. J Clin Invest 2001; 108: 391 – 398.
- 7 Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27 – 31.
- 8 Gluckman E, Broxmeyer HE, Auerbach AD, Friedman HS, Douglas GW, Devergie A, Esperou H, Thierry D, Socie G, Lehn P: Hematopoietic reconstitution of a patient with Fanconi anemia by means of umbilical cord blood from an HLA-identical sibling. N Engl J Med 1989; 321: 1174 – 1178.
- 9 Graham GJ, Wright EG: Haemopoietic stem cells: their heterogeneity and regulation. Int J Exp Pathol 1997; 78: 197 – 218.
- 10 Hamano K, Li TS, Kobayashi T, Tanaka N, Kobayashi S, Matsuzaki M, Esato K: The induction of angiogenesis by the implantation of autologous bone marrow cells: a novel and simple therapeutic method. Surgery 2001; 130: 44 – 54.
- 11 Healy L, May G, Gale K, Grosveld F, Greaves M, Enver T: The stem cell antigen CD34 functions as a regulator of hemopoietic cell adhesion. Proc Natl Acad Sci USA 1995; 92: 12240 – 12244.
- 12 Huss R, Hoy CA, Deeg HJ: Stroma derived hematopietic progenitors: cell cycle dependent proliferation and differentiation. In: Gluckman E, Coulombel E (eds): Ontogeny of hematopiesis. Aplastic Anemia. London, Libbey Eurotext, Colloque Inserm 1995; 253: 209 – 213.
- 13 Ikenaga S, Hamano K, Kobayashi T, Li TS, Kobayashi S, Matsuzaki M, Zempo N, Esato K: Autologous bone marrow implantation induced angiogenesis and improved deteriorated exercise capacity in a rat ischemic hindlimb model. J Surg Res 2001; 96: 277 – 283.DOI: 10.1006/jsre.2000.6080
- 14 Isner JM, Asahara T: Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 1999; 103: 1231 – 1236.
- 15 Iwaguro H, Yamaguchi JI, Kalka C, Murasawa S, Masuda H, Hayashi SI, Silver M, Li T, Isner JM, Asahara T: Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 2002; 105:in press.
- 16 Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T: Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci 2000; 97: 3422 – 3427.
- 17 Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S: Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001; 7: 430 – 436.DOI: 10.1038/86498
- 18 Kronenwett R, Martin S, Haas R: The role of cytokines and adhesion molecules for mobilization of peripheral blood stem cells. Stem Cells 2000; 18: 320 – 330.
- 19 Lin Y, Weisdorf DJ, Solovey A, Hebbel RR: Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 2000; 105: 71 – 77.
- 20 Llevadot J, Murosawa S, Kureishi Y, Uchida S, Masuda H, Kawamoto A, Walsh K, Isner JM, Asahara T: HMG-reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J Clin Invest 2001; 108: 399 – 405.
- 21 Masuda H, Kalka C, Asahara T: Endothelial progenitor cells for regeneration. Hum Cell 2000; 13: 153 – 160.
- 22 Mayani H, Lansdorp PM: Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells. Stem Cells 1998; 16: 153 – 165.
- 23 Murohara T, Ikeda H, Duan J, Shintani H, Sasaki KI, Eguchi H, Onitsuka I, Matsui K, Imaizumi T: Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 2000; 105: 1527 – 1536.
- 24 Nieda M, Nicol A, Denning-Kendall P, Sweetenham J, Bradley B, Hows J: Endothelial cell precursors are normal components of human umbilical cord blood. Br J Hematol 1997; 98: 775 – 777.
- 25 Ogawa M: Differentiation and proliferation of hematopietic stem cells. Blood 1993; 81: 2844 – 2855.
- 26 Prockop DJ: Marrow stromal cells as stem cells for non-hematopietic tissues. Science 1997; 103: 1231 – 1236.
- 27 Risau W: Differentiation of endothelium. FASEB J 1995; 9: 926 – 933.
- 28 Schatterman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA: Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest 2000; 106: 571 – 578.
- 29 Shintani S, Murohara T, Ikeda H, Ueno T, Sasaki K, Duan J, Imaizumi T: Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 2001; 103: 897 – 903.
- 30 Springer ML, Chen AS, Kraft PE, Bednarski M, Blau HM: VEGF gene delivery to muscle: potential role for vasculogenesis and angiogenesis in adults. Mol Cell 1998; 2: 549 – 558.
- 31 Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T: Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999; 5: 434 – 438.
- 32 Vasa M, Fitchlscherer S, Adler K, Aichler A, Martin H, Zeiher AM, Dimmeler S: Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 2001; 103: 2885 – 2890.
- 33 Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM: Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci 1994; 89: 10144 – 10118.
- 34 Zanjani ED, Silva MRG, Flake AW: Retention and multilineage expression of human hematopoietic stem cells in human-sheep chimeras. Blood Cells 1994; 20: 331 – 340.