Reclassification of gamma-ray bursts
Corresponding Author
Andreu Balastegui
1 Departament d'Astronomia i Meteorologia, Universitat de Barcelona, Martí i Franqués 1, Barcelona 08028, Spain
Search for more papers by this authorCorresponding Author
Pilar Ruiz-Lapuente
1 Departament d'Astronomia i Meteorologia, Universitat de Barcelona, Martí i Franqués 1, Barcelona 08028, Spain
2 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, 85740 Garching bei München, Germany
Search for more papers by this authorCorresponding Author
Ramon Canal
1 Departament d'Astronomia i Meteorologia, Universitat de Barcelona, Martí i Franqués 1, Barcelona 08028, Spain
3 Institut d'Estudis Espacials de Catalunya, Nexus Building, 2-4 Gran Capità, Barcelona 08034, Spain
Search for more papers by this authorCorresponding Author
Andreu Balastegui
1 Departament d'Astronomia i Meteorologia, Universitat de Barcelona, Martí i Franqués 1, Barcelona 08028, Spain
Search for more papers by this authorCorresponding Author
Pilar Ruiz-Lapuente
1 Departament d'Astronomia i Meteorologia, Universitat de Barcelona, Martí i Franqués 1, Barcelona 08028, Spain
2 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, 85740 Garching bei München, Germany
Search for more papers by this authorCorresponding Author
Ramon Canal
1 Departament d'Astronomia i Meteorologia, Universitat de Barcelona, Martí i Franqués 1, Barcelona 08028, Spain
3 Institut d'Estudis Espacials de Catalunya, Nexus Building, 2-4 Gran Capità, Barcelona 08034, Spain
Search for more papers by this authorAbstract
We have applied two different automatic classifier algorithms to the BATSE Current GRB Catalog data and we obtain three different classes of gamma-ray bursts (GRBs). Our results confirm the existence of a third, intermediate class of GRBs, with mean duration ∼, as deduced from a cluster analysis and from a neural network algorithm. Our analyses imply longer durations than those found by Mukherjee et al. and Horváth, whose intermediate class had durations ∼
. From the neural network analysis no difference in hardness between the two longest classes is found, and from both methods we find that the intermediate-duration class constitutes the most homogeneous sample of GRBs in its space distribution, while the longest-duration class constitutes the most inhomogeneous one with
, being thus the deepest population of GRBs with
. The trend previously found in long bursts, of spatial inhomogeneity increasing with hardness, only holds for this new longest-duration class.
References
- 1 Bagoly Z., Mészáros A., Horváth I., Balázs L. G., Mészáros P. , 1998, ApJ, 498, 342 (B98)
- 2 Berezinsky V., Hnatyk B., Vilenkin A. , 2001, Phys. Rev. D., 64, 043004
- 3 Blinnikov S. , 1999, astro-ph/9902305
- 4 Bloom J. S., Kulkarni S. R., Djorgovski S. G. , 2000, astro-ph/0010176
- 5 Castro-Tirado A. , 2001, Exploring the Gamma-ray Universe. in press, astro-ph/0102122
- 6 Daigne F. & Mochkovitch R. , 1998, MNRAS, 296, 275
- 7 Dezalay J. P. et al., 1997, ApJ, 490, L17
- 8 Fishman G. J. et al., 1999, ApJS, 122, 465
- 9 Galama T. J. et al., 1999, A&AS, 138, 465
- 10 Hakkila J., Haglin D. J., Pendleton G. N., Mallozzi R. S., Meegan C. A., Roiger R. J. , 2000, ApJ, 538, 165
- 11 Horváth I. , 1998, ApJ, 508, 757
- 12 Katz J. I. & Canel L. M. , 1996, ApJ, 471, 915
- 13 Klebesadel R. W., Strong I. B., Olson R. A. , 1973, ApJ, 182, L85
- 14 Kohonen T. , 1990, IEEC Proc., 78, 1464
- 15 Kouveliotou C., Meegan C. A., Fishman G. J., Bhat N. P., Briggs M. S., Koshut T. M., Paciesas W. S., Pendleton G. N. , 1993, ApJ, 413, L101 (K93)
- 16 Lamb D. Q. & Reichart D. E. , 2000, ApJ, 536, 1 (LR00)
- 17 Ma F. & Xie B. , 1996, ApJ, 462, L63
- 18 MacFadyen A. I. & Woosley S. E. , 1999, ApJ, 524, 262
- 19 Madau P. & Pozzetti L. , 2000, MNRAS, 312, L9
- 20 Mallozzi R. S., Pendleton G. N., Paciesas W. S. , 1996, ApJ, 471, 636
- 21 Mao S. & Paczyński B. , 1992, ApJ, 388, L45
- 22 Meegan C. A., Fishman G. J., Wilson R. B. , 1985, ApJ, 291, 479
- 23 Mészáros P. , 2001, Sci, 291, 79
- 24 Mészáros P. & Rees M. J. , 1993, ApJ, 405, 278
- 25 Metzger M. R. et al., 1997, IAU Circ. 6655
- 26 Mukherjee S., Feigelson E. D., Babu G. J., Murtagh F., Fraley C., Raftery A. , 1998, ApJ, 508, 314, (M98)
- 27 Murtagh F. & Heck A. , 1987, Multivariate Data Analysis, Astrophysics and Space Science Library. Reidel, Dordrecht (M87)
- 28 Narayan R., Paczyński B., Piran T. , 1992, ApJ, 395, L83
- 29 Nemiroff R. J. , 1994, astro-ph/9402012
- 30 Nemiroff R. J., Norris J. P., Bonnell J. T., Wickramasinghe W. A. D. T., Kouveliotou C., Paciesas W. S., Fishman G. J., Meegan C. A. , 1994, ApJ, 435, L133
- 31 Paczyński B. , 1990, ApJ, 363, 218
- 32 Paczyński B. , 1998, in C. A. Meegan, R. D. Preece, T. M. Koshut, eds, 4th Huntsville Symp., Gamma Ray Bursts. Am. Inst. Phys., New York, p. 783
- 33 Panaitescu A., Kumar P., Narayan R. , 2001, astro-ph/0108132
- 34 Pendleton G. N. et al., 1997, ApJ, 489, 175
- 35 Piran T. , 2000, Phys. Rep., 333, 529
- 36 Press W. H. et al., 1992, Numerical Recipes in Fortran, 2nd edn. Cambridge Univ. Press, Cambridge
- 37 Rees M. J. & Mészáros P. , 1992, MNRAS, 258, 41 p
- 38 Spruit H. C. , 1999, A&A, 341, L1
- 39 Tavani M. , 1998, ApJ, 497, L21 (T98)
- 40 Totani T. , 1997, ApJ, 486, L71
- 41 Totani T. , 1999, ApJ, 511, 41
- 42 Ward J. H. , 1963, in G. J. Babu, E. D. Feigelson, eds, Statistical Challenges of Modern Astronomy. Springer, New York, p. 135
- 43 Woosley S. E. , 1993, ApJ, 405, 273