Seminal fluid-mediated fitness traits in Drosophila
Tracey Chapman
The Galton Laboratory, Department of Biology, University College, London, Wolfson House, 4 Stephenson Way, London, NW1 2HE, U.K.
Search for more papers by this authorTracey Chapman
The Galton Laboratory, Department of Biology, University College, London, Wolfson House, 4 Stephenson Way, London, NW1 2HE, U.K.
Search for more papers by this authorAbstract
The seminal fluid of male Drosophila contains a cocktail of proteins that have striking effects on male and female fitness. In D. melanogaster, seminal fluid proteins affect female receptivity, ovulation, oogenesis, sperm storage, sperm competition and mating plug formation. In addition, the seminal fluid contains antibacterial peptides and protease inhibitors. Some seminal fluid-encoding genes also show high rates of evolutionary change, exhibiting both significant between-species divergence and within-species polymorphism. Seminal fluid protein genes are expressed only in males, begging the question of how and why the reproductive processes of females are influenced by males. In this review I address these issues by bringing together evidence for the function, evolution, diversification, and maintenance of variation in, seminal fluid-mediated traits.
References
- 1 Aguadé, M. 1997. Positive selection and the molecular evolution of a gene of male reproduction, Acp26Aa of Drosophila. Mol. Biol. Evol., 14, 544–549.
- 2 Aguadé, M. 1998. Different forces drive the evolution of the Acp26Aa and Acp26Ab accessory gland genes in the Drosophila melanogaster species complex. Genetics, 150, 1079–1089.
- 3 Aguadé, M. 1999. Positive selection drives the evolution of the Acp29AB accessory gland protein in Drosophila. Genetics, 152, 543–551.
- 4 Aguadé, M., Miyashita, N. and Langley, C. H. 1992. Polymorphism and divergence in the Mst26A male accessory gland gene region in Drosophila. Genetics, 132, 755–770.
- 5 Aigaki, T., Fleischmann, I., Chen, P. S. and Kubli, E. 1991. Ectopic expression of sex peptide alters reproductive behaviour of female D.melanogaster. Neuron, 7, 1–20.
- 6 Andrews, J., Bouffard, G. G., Cheadle, C., Lu, J., Becker, K. G. and Oliver, B. 2000. Gene discovery using computational and microarray analysis of transcription in the Drosophila melanogaster testis. Genome Res., 10, 1841–1842.
- 7 Arnqvist, G. and Rowe, L. 1995. Sexual conflict and arms races between the sexes: a morphological adaptation for control of mating in a female insect. Proc. R. Soc. B., 261, 123–127.
- 8 Baumann, H. 1974a. Isolation, partial characterisation, and biosynthesis of the paragonial substances, PS-1 and PS-2, of Drosophilafunebris. J. Insect Physiol., 21, 2181–2194.
- 9 Baumann, H. 1974b. Biological effects of paragonial substances PS-1 and PS-2 in females of Drosophilafunebris. J. Insect Physiol., 20, 2347–2362.
- 10 Baumann, H., Wilson, K. J., Chen, P. S. and Humbel, R. E. 1975. The amino acid sequence of a peptide (PS-1) from Drosophilafunebris: a paragonial peptide from males which reduces the receptivity of the females. Eur. J. Biochem., 52, 521–529.
- 11 Begun, D. J. 1996. Population genetics of silent and replacement variation in Drosophilasimulans and D.melanogaster: X/autosome differences? Mol. Biol. Evol., 13, 1405–1407.
- 12 Begun, D. J., Whitley, P., Todd, B., Waldrip-Dail, H. and Clark, A. 2000. Molecular population genetics of male accessory gland proteins in Drosophila. Genetics, 156, 1879–1888.
- 13 Bertram, M. J., Neubaum, D. M. and Wolfner, M. F. 1996. Localization of the Drosophila male accessory gland protein Acp36DE in the mated female suggests a role in sperm storage. Insect Biochem. Mol. Biol., 26, 971–980.
- 14 Birkhead, T. R. 1998. Cryptic female choice: criteria for establishing female sperm choice. Evolution, 52, 1212–1218.
- 15 Birkhead, T. R. 2000. Defining and demonstrating postcopulatory female choice – again. Evolution, 54, 1057–1060.
- 16 Boulétreau-Merle, J. 1978. Ovarian activity and reproductive potential in a natural population of Drosophila melanogaster. Oecologia, 35, 319–342.
- 17 Cavener, D. R. 1985. Coevolution of the glucose dehydrogenase gene and the ejaculatory duct in the genus Drosophila. Mol. Biol. Evol., 2, 141–149.
- 18 Cavener, D. R. and Macintyre, R. J. 1983. Biphasic expression and function of glucose dehydrogenase in Drosophila melanogaster. Proc. Nat. Acad. Sci. U.S.A., 80, 6286–6288.
- 19 Chapman, T., Trevitt, S. and Partridge, L. 1994. Remating and male-derived nutrients in Drosophila melanogaster. J. Evol. Biol., 7, 51–69.
- 20 Chapman, T., Liddle, L. F., Kalb, J. M., Wolfner, M. F. and Partridge, L. 1995. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature, 373, 241–244.
- 21 Chapman, T., Neubaum, D. M., Wolfner, M. F. and Partridge, L. 2000. The role of male accessory gland protein Acp36DE in sperm competition in Drosophila melanogaster. Proc. R. Soc. B, 267, 1097–1105.
- 22 Chapman, T., Herndon, L. A., Heifetz, Y., Partridge, L. and Wolfner, M. F. 2001. The Acp26Aa seminal fluid protein is a modulator of early egg-hatchability in Drosophila melanogaster. Proc. R. Soc. B, 268, 1647–1654.
- 23 Charlet, M., Lagueux, M., Reichart, J.-M., Hoffman, D., Braun, A. and Meister, M. 1996. Cloning of the gene encoding the antibacterial peptide drosocin involved in Drosophila immunity. Eur. J. Biochem., 241, 699–706.
- 24 Chen, P. S. 1996. The accessory gland proteins in male Drosophila: structural, reproductive, and evolutionary aspects. Experientia, 52, 503–510.
- 25 Chen, P. S. and Balmer, J. 1989. Secretory proteins and sex peptides of the male accessory gland in Drosophilasechellia. J. Insect Physiol., 35, 759–764.
- 26 Chen, P. S., Stumm-Zollinger, E., Aigaki, T., Balmer, J., Bienz, M. and Böhlen, P. 1988. A male accessory gland peptide that regulates reproductive behaviour of female D.melanogaster. Cell, 54, 291–298.
- 27 Chippindale, A. K., Gibson, J. and Rice, W. R. 2001. Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc. Natl. Acad. Sci. U.S.A., 98, 1671–1675.
- 28 Cirera, S. and Aguadé, M. 1997. Evolutionary history of the sex-peptide (Acp70A) gene region in Drosophila melanogaster. Genetics, 147, 189–197.
- 29 Cirera, S. and Aguadé, M. 1998. The sex peptide gene (ACP 70A) is duplicated in Drosophilasubobscura. Gene, 210, 247–254.
- 30 Civetta, A. and Clark, A. G. 2000a. Correlated effects of sperm competition and postmating female mortality. Proc. Natl. Acad. Sci. U.S.A., 97, 13162–13165.
- 31 Civetta, A. and Clark, A. G. 2000b. Chromosomal effects on male and female components of sperm precedence in Drosophila. Genet. Res., 75, 143–151.DOI: 10.1017/s0016672399004292
- 32 Civetta, A. and Singh, R. S. 1995. High divergence of reproductive tract proteins and their association with postzygotic reproductive isolation in Drosophila melanogaster and Drosophilavirilis group species. J. Mol. Evol., 41, 1085–1095.
- 33 Clark, A. G. and Begun, D. J. 1998. Female genotypes affect sperm displacement in Drosophila. Genetics, 149, 1487–1493.
- 34 Clark, A. G. and Wang, L. 1997. Molecular population genetics of Drosophila immune system genes. Genetics, 147, 713–724.
- 35 Clark, A. G., Aguadé, M., Prout, T., Harshman, L. G. and Langley, C. H. 1995. Variation in sperm displacement and its association with accessory gland protein loci in Drosophila melanogaster. Genetics, 139, 189–201.
- 36 Clark, A. G., Begun, D. J. and Prout, T. 1999. Female × male interactions in Drosophila sperm competition. Science, 283, 217–220.DOI: 10.1126/science.283.5399.217
- 37 Clark, A. G., Dermitzakis, E. T. and Civetta, A. 2000. Nontransitivity of sperm precedence in Drosophila. Evolution, 54, 1030–1035.
- 38 Coleman, S., Drahn, B., Petersen, G., Stolorov, J. and Kraus, K. 1995. A Drosophila male accessory-gland protein that is a member of the serpin superfamily of proteinase-inhibitors is transferred to females during mating. Insect Biochem. Mol. Biol., 25, 203–207.
- 39 Cordero, C. 1995. Ejaculate substances that affect female insect reproductive physiology and behaviour: honest or arbitrary traits? J. Theor. Biol., 174, 453–461.DOI: 10.1006/jtbi.1995.0111
- 40 Cordero, C. 1996. On the evolutionary origin of nuptial seminal gifts in insects. J. Insect Behav., 9, 969–974.
- 41 Cordero, C. 1998. Chemical ornaments of semen. J. Theor. Biol., 192, 581–584.DOI: 10.1006/jtbi.1997.0621
- 42 Coulhart, M. B. and Singh, R. S. 1988. Differing amounts of genetic polymorphism in testes and male accessory glands of Drosophila melanogaster and D.simulans. Biochem. Genet., 26, 153–164.
- 43 Curtsinger, J. W. 1991. Sperm competition and the evolution of multiple mating. Am. Nat., 138, 93–102.
- 44 Dibenedetto, A. J., Harada, H. A. and Wolfner, M. F. 1990. Structure, cell-specific expression, and mating-induced regulation of a Drosophila melanogaster male accessory gland gene. Dev. Biol., 139, 134–148.
- 45 Eberhard, W. G. 1996. Female Control.Sexual Selection by Cryptic Female Choice. Princeton University Press, Princeton.
- 46 Eberhard, W. G. 1997. Sexual selection by cryptic female choice in insects and arachnids. In: Choe, J. C. and Crespi, B. J. (eds) The Evolution of Mating Systems in Insects and Arachnids, pp. 32–57. Cambridge University Press, Cambridge.
- 47 Eberhard, W. G. 2000. Criteria for demonstrating postcopulatory female choice. Evolution, 54, 1047–1050.
- 48 Eberhard, W. G. and Cordero, C. 1995. Sexual selection by cryptic female choice on male seminal products – a new bridge between sexual selection and reproductive physiology. Trends Ecol. Evol., 10, 493–496.
- 49 Ferrandon, D., Jung, A., Criqui, M., Lemaitre, B., Uttenweiler-Joseph, S., Michaut, L. ET AL. 1998. A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBOJ., 17, 1217–1227.
- 50 Gilbert, D. G. 1981. Ejaculate esterase 6 and initial sperm use by female Drosophila melanogaster. J. Insect Physiol., 27, 641–650.
- 51 Gilbert, D. G. and Richmond, R. C. 1981. Studies of esterase-6 in Drosophila melanogaster. 6. Ejaculate competitive abilities of males having null or active alleles. Genetics, 97, 85–94.
- 52 Gilbert, D. G. and Richmond, R. C. 1982. Esterase 6 in Drosophila melanogaster: reproductive function of active and null males at low temperature. Proc. Natl. Acad. Sci. U.S.A., 79, 2962–2966.
- 53 Gilbert, D. G., Richmond, R. C. and Sheehan, K. B. 1981. Studies on esterase 6 in Drosophila melanogaster. V. Progeny production and sperm use in females inseminated by males having active or null alleles. Evolution, 35, 21–37.
- 54 Haldane, J. B. S. 1949. Parental and fraternal correlations in fitness. Ann. Eugen., 14, 288–292.
- 55 Haldane, J. B. S. 1962. Conditions for stable polymorphism at an autosomal locus. Nature, 193, 1108–1108.
- 56 Harshman, L. G. and Prout, T. 1994. Sperm displacement without sperm transfer in Drosophila melanogaster. Evolution, 48, 758–766.
- 57 Heifetz, Y., Lung, O., Frongillo, E. A. and Wolfner, M. F. 2000. The Drosophila seminal fluid protein Acp26Aa stimulates release of oocytes by the ovary. Curr. Biol., 10, 99–102.
- 58 Heifetz, Y., Tram, U. and Wolfner, M. F. 2001. Male contributions to egg production: the role of accessory gland products and sperm in Drosophila melanogaster. Proc. R. Soc. B, 268, 175–180.
- 59 Herndon, L. A. and Wolfner, M. F. 1995. A Drosophila seminal fluid protein, Acp26Aa, stimulates egg-laying in females for 1 day after mating. Proc. Natl. Acad. Sci. U.S.A., 92, 10114–10118.
- 60 Hihara, F. 1981. Effects of the male accessory gland secretion on oviposition and remating in females of Drosophila melanogaster. Zool. Mag., 90, 307–316.
- 61 Holland, B. and Rice, W. R. 1998. Chase-away sexual selection: antagonistic seduction versus resistance. Evolution, 52, 1–7.
- 62 Holland, B. and Rice, W. R. 1999. Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proc. Natl. Acad. Sci. U.S.A., 96, 5083–5088.
- 63 Hughes, K. A. 1997. Quantitative genetics of sperm precedence in Drosophila melanogaster. Genetics, 145, 139–151.
- 64 Imamura, M., Hainofukushima, K., Aigaki, T. and Fuyama, Y. 1998. Ovulation stimulating substances in Drosophilabiarmipes males: their origin, genetic variation in the response of females, and molecular characterization. Insect Biochem. Mol. Biol., 28, 365–372.
- 65 Johnstone, R. A. and Keller, L. 2000. How males can gain by harming their mates: sexual conflict, seminal toxins and the cost of mating. Am. Nat., 156, 368–377.
- 66 Kalb, J. M., Dibenedetto, A. J. and Wolfner, M. F. 1993. Probing the function of Drosophilamelanogaster accessory-glands by directed cell ablation. Proc. Natl. Acad. Sci. U.S.A., 90, 8093–8097.
- 67 Karotam, J., Delves, A. and Oakeshott, J. 1993. Conservation and change in structural and 5′ flanking sequences of esterase 6 in sibling species of Drosophila. Genetica, 88, 11–28.
- 68 Keller, L. and Reeve, H. K. 1995. Why do females mate with multiple males? The sexually selected sperm hypothesis. Adv. Stud. Behav., 24, 291–315.
- 69 Kempenaers, B., Foerster, K., Questiau, S., Robertson, B. C. and Vermeirssen, E. L. M. 2000. Distinguishing between female sperm choice versus male sperm competition: a comment on Birkhead. Evolution, 54, 1050–1052.
- 70 Ludwig, M. Z., Uspensky, I. I., Ivavov, A. I., Kopantseva, M. R., Dianov, C. M., Tamarina, N. A. ET AL. 1991. Genetic control and expression of the major ejaculatory bulb protein PEB-me in Drosophila melanogaster. Biochem. Genet., 29, 215–240.
- 71 Lung, O. and Wolfner, M. F. 1999. Drosophila seminal fluid proteins enter the circulatory system of the mated female fly by crossing the posterior vaginal wall. Insect Biochem. Mol. Biol., 29, 1043–1052.
- 72 Lung, O. and Wolfner, M. F. 2001a. Identification and characterisation of the major Drosophila melanogaster mating plug protein. Insect Biochem. Mol. Biol., 31, 543–551.
- 73 Lung, O. and Wolfner, M. F. 2001b. Drosophila males transfer antibacterial proteins from their accessory gland and ejaculatory duct to their mates. J. Insect Physiol., 47, 617–622.
- 74 Manning, A. 1962. A sperm factor affecting the receptivity of Drosophila melanogaster females. Nature, 194, 252–253.
- 75 Manning, A. 1967. The control of sexual receptivity in female Drosophila. Anim. Behav., 15, 239–250.
- 76 Marchini, D., Marri, L., Rosetto, M., Manetti, A. and Dallai, R. 1997. Presence of antibacterial peptides on the laid egg chorion of the medfly Ceratitis capitata. Biochem. Biophys. Res. Comm., 240, 657–663.
- 77 Maynard Smith, J. and Haigh, J. 1974. The hitch-hiking effect of a favourable gene. Genet. Res., 23, 23–35.
- 78 Meikle, D. B., Sheehan, K. B., Phillis, D. M. and Richmond, R. C. 1990. Localization and longevity of seminal-fluid esterase-6 in mated female Drosophilamelanogaster. J. Insect Physiol., 36, 93–101.
- 79 Monsma, S. A. and Wolfner, M. F. 1988. Structure and expression of a Drosophila male accessory gland gene whose product resembles a peptide prehormone precursor. Genes Devel., 2, 1063–1073.
- 80 Monsma, S. A., Harada, H. A. and Wolfner, M. F. 1990. Synthesis of two male accessory proteins and their fate after transfer to the female during mating. Dev. Biol., 142, 465–475.
- 81 Nakayama, S., Kaiser, K. and Aigaki, T. 1997. Ectopic expression of sex-peptide in a variety of tissues in Drosophila females using the P[GAL4] enhancer-trap system. Mol. Gen. Genet., 254, 449–455.
- 82 Neckameyer, W. S., Woodrome, S., Holt, B. and Mayer, A. 2000. Dopamine and senescence in Drosophila melanogaster. Neurobiol. Aging, 21, 145–152.
- 83 Neubaum, D. M. and Wolfner, M. F. 1999. Mated female Drosophila melanogaster females require a seminal fluid protein, Acp 36DE, to store sperm efficiently. Genetics, 153, 845–857.
- 84 Ohashi, Y. Y., Haino-Fukushima, K. And Fuyama, Y. 1991. Purification and characterisation of an ovulating stimulating substance from the male accessory glands of Drosophila suzukii. Insect. Biochem., 21, 413–419.
- 85 Ottiger, M., Soller, M., Stocker, R. F. and Kubli, E. 2000. Binding sites of Drosophila melanogaster sex peptide pheromones. J. Neurobiol., 44, 57–71.DOI: 10.1002/1097-4695(200007)44:1<57::aid-neu6>3.0.co;2-q
- 86 Park, M. And Wolfer, M. F. 1995. Male and female cooperate in the prohormone-like processing of a Drosophila melanogaster seminal fluid protein. Dev. Biol., 171, 694–702.
- 87 Parker, G. A. 1979. Sexual selection and sexual conflict. In: Blum, M. S. and Blum, N. A. (eds) Sexual Selection and Reproductive Competition in Insects, pp. 123–166. Academic Press, New York.
- 88 Partridge, L., Fowler, K., Trevitt, S. and Sharp, W. 1986. An examination of the effects of males on the survival and egg production rates of female Drosophila melanogaster. J. Insect Physiol., 32, 925–929.
- 89 Pitnick, S. and Brown, W. D. 2000. Criteria for demonstrating female sperm choice. Evolution, 54, 1052–1056.
- 90 Pitnick, S., Brown W. and Miller, G. 2001. Evolution of female remating behaviour following experimental removal of sexual selection. Proc. R. Soc. B, 268, 557–563.
- 91 Prout, T. and Bundgaard, J. 1977. The population genetics of sperm displacement. Genetics, 85, 95–124.
- 92 Prout, T. and Clark, A. G. 1996. Polymorphism in genes that influence sperm displacement. Genetics, 144, 401–408.
- 93 Prout, T. and Clark, A. G. 2000. Seminal fluid causes temporarily reduced egg hatch in previously mated females. Proc. R. Soc. B, 267, 201–203.
- 94 Rice, W. R. 1984. Sex-chromosomes and the evolution of sexual dimorphism. Evolution, 38, 735–742.
- 95 Rice, W. R. 1992. Sexually antagonistic genes – experimental evidence. Science, 256, 1436–1439.
- 96 Rice, W. R. 1996. Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature, 381, 232–234.
- 97 Rice, W. R. and Holland, B. 1997. The enemies within: intergenomic conflict, interlocus contest evolution (ICE), and the intraspecific Red Queen. Behav. Ecol. Sociobiol., 41, 1–10.
- 98 Saad, M., Game, A. Y., Healy, M. J. and Oakeshott, J. G. 1994. Associations of esterase-6 allozyme and activity variation with reproductive fitness in Drosophila melanogaster. Genetica, 94, 43–56.
- 99 Samakovlis, C., Kylsten, P., Kimbrell, D., Engstrom, A. and Hultmark, A. 1991. The andropin gene and its product, a male-specific anti-bacterial peptide in Drosophila melanogaster. EMBOJ., 10, 163–169.
- 100 Sato, K., Aigaki, T. and Fuyama, Y. 1997. Functions of an ovulating stimulating substance produced in the ejaculatory duct of Drosophilabiarmipes males. Genes Genet. Syst., 72, 387–387.
- 101 Sawby, R. and Hughes, K. A. 2001. Male genotype affects female longevity in Drosophila melanogaster. Evolution, 55, 834–839.
- 102 Schafer, U. 1986. Genes for male-specific transcripts in D.melanogaster. Mol. Gen. Genet., 202, 219–225.
- 103 Schmidt, T., Stumm-Zollinger, E., Chen, P. S., Böhlen, P. and Stone, S. R. 1989. A male accessory gland peptide with protease inhibitory activity in Drosophilafunebris. J. Biol. Chem., 264, 9745–9749.
- 104 Schmidt, T., Choffat, Y., Schneider, M., Hunziker, P., Fuyama, Y., Klauser, S. at al. . 1993. Drosophilasuzukii contains a peptide homologous to the Drosophila melanogaster sex peptide and functional in both species. Insect Biochem. Mol. Biol., 23, 571–579.
- 105 Service, P. M. and Fales, A. J. 1993. Evolution of delayed reproductive senescence in male fruit-flies – sperm competition. Genetica, 91, 111–125.
- 106 Service, P. M. and Vossbrink, R. E. 1996. Genetic variation in first male effects on egg-laying and remating by female Drosophilamelanogaster. Behav. Genet., 26, 39–48.
- 107 Sgrò, C. M., Chapman, T. and Partridge, L. 1998. Sex-specific selection on time to remate in Drosophila melanogaster. Anim. Behav., 56, 1267–1278.
- 108 Snook, R. R. 2001. Sexual selection: conflict, kindness and chicanery. Curr. Biol., 11, R337–R341.
- 109 Soller, M., Bownes, M. and Kubli, E. 1997. Mating and sex peptide stimulate the accumulation of yolk in oocytes of Drosophila melanogaster. Eur. J. Biochem., 243, 732–738.
- 110 Soller, M., Bownes, M. and Kubli, E. 1999. Control of oocyte maturation in sexually mature Drosophila females. Dev. Biol., 208, 337–351.
- 111 Swanson, W., Clark, A. G., Waldrip-Dail, H., Wolfner, M. F. and Aquadro, C. 2001a. Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila. Proc. Natl. Acad. Sci. U.S.A., 98, 7375–7379.
- 112 Swanson, W., Yang, Z., Wolfner, M. F. and Aquadro, C. 2001b. Positive Darwinian selection drives the evolution of several reproductive proteins in mammals. Proc.Natl. Acad. Sci. U.S.A. , 98, 2509–2514.
- 113 Thomas, S. and Singh, R. S. 1992. A comprehensive study of genic variation in natural populations of Drosophila melanogaster. VII. Varying rates of genic divergence as revealed by two-dimensional electrophoresis. Mol. Biol. Evol., 9, 507–525.
- 114 Tram, U. and Wolfner, M. F. 1999. Male seminal fluid proteins are essential for sperm storage in Drosophila melanogaster. Genetics, 153, 837–844.
- 115 Trivers, R. L. 1972. Parental investment and sexual selection. In: Campbell, B. (ed.) Sexual Selection and the Descent of Man, pp. 136–179. Aldine, Chicago.
- 116 Tsaur, S. C. and Wu, C. I. 1997. Positive selection and the molecular evolution of a gene of male reproduction, Acp26Aa of Drosophila. Mol. Biol. Evol., 14, 544–549.
- 117 Tsaur, S. C., Ting, C. T. and Wu, C. I. 1998. Positive selection driving the evolution of a gene of male reproduction, Acp26Aa, of Drosophila: II. Divergence versus polymorphism. Mol. Biol. Evol., 15, 1040–1046.
- 118 Tsaur, S. C., Ting, C. T. and Wu, C. I. 2001. Sex in Drosophilamauritiana: a very high level of amino acid polymorphism in a male reproductive protein gene, Acp26Aa. Mol. Biol. Evol., 18, 22–26.
- 119 West-Eberhard, M. J. 1984. Sexual selection, competitive communication and species-specific signals in insects. In: Lewis, T. (ed.) Insect Communication, pp. 283–324. Academic Press, New York.
- 120 Wickler, W. 1985. Stepfathers in insects and their pseudo-parental investment. Z. Tierpsychol., 69, 72–78.
- 121 Wolfner, M. F. 1997. Tokens of love: functions and regulation of Drosophila male accessory gland products. Insect Biochem. Mol. Biol., 27, 179–192.
- 122 Wolfner, M. F., Harada, H. A., Bertram, M. J., Stelick, T. J., Kraus, K. W., Kalb, J. M. et al. 1997. New genes for male accessory gland proteins in Drosophila melanogaster. Insect Biochem. Mol. Biol., 27, 825–834.
- 123 Xue, L. and Noll, M. 2000. Drosophila female sexual behaviour induced by sterile males showing copulation complementation. Proc. Nat. Acad. Sci. U.S.A., 97, 3272–3275.