Ligands for in vivo imaging of nicotinic receptor subtypes in Alzheimer brain†
B. Långström
PET-Center/
Institute of Chemistry, Uppsala University, S-751 85 Uppsala, Sweden,
Search for more papers by this authorA. Nordberg
Karolinska Institutet, Department of NEUROTEC, Division of Molecular Neuropharmacology, Geriatric Clinic, Huddinge University Hospital, S-141 86 Huddinge, Sweden
Search for more papers by this authorB. Långström
PET-Center/
Institute of Chemistry, Uppsala University, S-751 85 Uppsala, Sweden,
Search for more papers by this authorA. Nordberg
Karolinska Institutet, Department of NEUROTEC, Division of Molecular Neuropharmacology, Geriatric Clinic, Huddinge University Hospital, S-141 86 Huddinge, Sweden
Search for more papers by this authorAbbreviations: A-85380: 3-((2(S)-azetidinyl)methoxy)pyridine; ABT-418: 3-methyl-5-(1-methyl-2(S)-pyrrolidinyl)isoxazole; AD: Alzheimer's disease; BrPH: (±)-exo-2-(2-bromo-5-pyridyl)-7-azabicyclo[2.2.1]heptane; FPH: (±)-exo-2-(2-fluoro-5-pyridyl)-7-azabicyclo[2.2.1]heptane; IPH: (±)-exo-2-(2-iodo-5-pyridyl)-7-azabicyclo[2.2.1]heptane; MPA: (R,S)-1-methyl-2-(3-pyridyl)azetidine; nAChR: nicotinic acetylcholine receptor; PET: positron emission tomography; SPECT: single photon emission computed tomography.
Abstract
The neuronal nicotinic acetylcholine receptors (nAChR) are involved in functional processes in brain including cognitive function and memory. A severe loss of the nAChRs has been detected in brain of patients with Alzheimer's disease (AD). There is a great interest to image nAChRs noninvasive for detection of receptor impairments even at a presymptomatic stage of AD as well for monitoring outcome of drug treatment. (S) [11C]Nicotine, has so far been the only nAChR ligand used in positron emission tomography (PET) studies for visualizing nAChRs in human brain. In order to develop PET/SPECT nAChRs ligands for detection of subtypes of nAChRs nicotine analogues, epibatidine and A-85380 compounds have been characterized in vitro and investigated in vivo. Epibatidine and A-85380 have been found to have higher specific signals and more favorable kinetic parameters than nicotine and its analogues. The epibatidine and A-85380 compounds can also be radiolabeled with high specific radioactivity, show affinities for the nAChRs in the pM range and readily cross the blood–brain barrier. In addition they reversibly bind to the nAChRs and show low non-specific binding and moderately fast metabolism. Due to a probably high α4β2 nAChR selectivity combined with low toxicity, the A-85380 analogs presently seem to be the most promising nAChR ligand imaging of subtypes of nAChRs in human brain.
References
- 1
Lukas RJ.
Neuronal nicotinic acetylcholine receptors. In: FJ Barrantes, ed.
The Nicotinic acetylcholine receptor: current views and future trends. Berlin: Springer Verlag, 1998; 145–73.
10.1007/978-3-662-40279-5_7 Google Scholar
- 2 Paterson D & Nordberg A. Neuronal nicotinic receptors in the human brain. Progr Neurobiol 2000; 102: 75–111.
- 3 Clementi F, Fornasari D & Gotti C, eds. Neuronal Nicotinic Receptors. Berlin: Springer Verlag, 2000; 1–821.
- 4 Holladay MW, Dart MJ & Lynch JK. Neuronal nicotinic acetylcholine receptors as targets for drug discovery. J Med Chem 1997; 40: 4169–94.
- 5 Lindstrom J, Anand R, Peng X, Gerzanich V, Wang F & Li Y. Neuronal nicotinic receptor subtypes. Ann NY Acad Sci 1995; 757: 100–16.
- 6 Flores CM, Rogers SW, Pabreza LA, Wolfe BB & Kellar KJ. A subtype of nicotinic cholinergic receptor in rat brain is composed of α4 and β2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 1992; 41: 31–7.
- 7 Couturier S, Bertrand D & Matter JM et al. A neuronal nico-tinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-BTX. Neuron 1990; 5: 847–56.
- 8 Gerzanich V, Anand R & Lindstrom J. Homomers of α8 and α7 subunits of nicotinic receptors exhibit similar channel but contrasting binding site properties. Mol Pharmacol 1994; 45: 212–20.
- 9 Nordberg A, Adem A, Nilsson L, Romanelli L & Zhang X. Heterogeneous cholinergic nicotinic receptors in the CNS. NATO ASI Series 1988; H25: 331–49.
- 10 London ED, Ball MJ & Waller SB. Nicotinic binding sites in cerebral cortex and hippocampus in Alzheimer's dementia. Neurochem Res 1989; 14: 745–50.
- 11 Abood LG, Lu X & Banerjee S. Receptor binding characteristics of a 3H-labeled azetidine analogue of nicotine. Biochem Pharmacol 1987; 36: 2337–41.
- 12 Happe HK, Peters JL, Bergman DA & Murrin LC. Localiz-ation of nicotinic cholinergic receptors in rat brain: auto-radiographic studies with [3H]cytisine. Neuroscience 1994; 62: 929–44.
- 13 Anderson DJ, Williams M & Pauly J et al. Characterization of [3H]ABT-418: A novel cholinergic channel ligand. J Pharm-acol Exp Ther 1995; 273: 1434–41.
- 14 Houghtling RA, Dávila-García MI & Kellar KJ. Character-ization of (+/-)(-)[3H]epibatidine binding to nicotinic cholin-ergic receptors in rat and human brain. Mol Pharmacol 1995; 48: 280–7.
- 15 Broussolle EP, Wong DF, Fanelli RJ & London ED. In vivo specific binding of [3H]l-nicotine in the mouse brain. Life Sci 1989; 44: 1123–32.
- 16 Flesher JE, Scheffel U, London ED & Frost JJ. In vivo labeling of nicotinic cholinergic receptors in brain with [3H]cytisine. Life Sci 1994; 101: 1883–90.
- 17 London ED, Scheffel U, Kimes AS & Kellar KJ. In vivo labeling of nicotinic acetylcholine receptors in brain with [3H]epibatidine. Eur J Pharmacol 1995; 278: R1–R2.DOI: 10.1016/0014-2999(95)00178-n
- 18 Scheffel U, Taylor GF, Kepler JA, Carroll GI & Kuhar MJ. In vivo labeling of neuronal nicotinic acetylcholine receptors with radiolabeled isomers of norchloroepibatidine. Neuroreport 1995; 6: 2483–8.
- 19 Kämpfer I, Sorger D & Schliebs R et al. Radioiodination of nicotine with specific activity high enough for mapping nico-tinic acetylcholine receptors. Eur J Nucl Med 1996; 23: 157–62.
- 20 Muzic RF, Berridge MS, Friedland RP, Zhu N & Nelson AD. PET quantification of specific binding of carbon-11-nicotine in human brain. J Nucl Med 1998; 39: 2048–54.
- 21 Nybäck H, Halldin C, Åhlin A, Curvall M & Eriksson L. PET studies of the uptake of (S) and (R) [11C]nicotine in the human brain. Difficulties in visualizing specific receptor binding in vivo. Psychopharmacology 1994; 115: 31–6.
- 22 Nordberg A, Amberla K & Shigeta M et al. Long-term tacrine treatment in three mild Alzheimer patients: effects on nicotinic receptors, cerebral blood flow, glucose metabolism, EEG, and cognitive abilities. Alzheimer Dis Assoc Disord 1998; 12: 228–37.
- 23 Maziere M & Delforge J. PET imaging of [11C]nicotine: Historical aspects. In Domino EF, ed. Brain imaging of nicotine and tobacco smoking. Ann Arbor: NPP Books, 1995; 13–28.
- 24 Grünwald F, Biersack HJ & Kuschinsky W. Nicotine receptor mapping. Eur J Nucl Med 1996; 23: 1012–14.
- 25 Nordberg A, Lundqvist H, Hartvig P, Lilja A & Långström B. Kinetic analysis of regional (S)(-)[11C]nicotine in normal and Alzheimer brains –in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord 1995; 9: 21–7.
- 26 Lundqvist H, Nordberg A, Hartvig P & Långström B. (S)(-)[11C]Nicotine binding assessed by PET: a dual tracer model evaluated in the Rhesus monkey brain. Alzheimer Dis Assoc Disord 1998; 12: 238–46.
- 27 Nordberg A & Winblad B. Reduced number of [3H]nicotine and [3H]acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci Lett 1986; 72: 115–9.
- 28 Whitehouse PJ, Martino AM & Antuono PG et al. Nicotinic acetylcholine binding sites in Alzheimer's disease. Brain Res 1986; 371: 146–51.
- 29 Perry EK, Morris CM & Court JA et al. Alteration in nicotine binding sites in Parkinson's disease, Lewy body dementia and Alzheimer's disease: possible index of early neuropathology. Neuroscience 1995; 64: 385–95.DOI: 10.1016/0306-4522(94)00410-7
- 30 Sihver W, Gillberg PG, Svensson AL & Nordberg A. Auto-radiographic comparison of [3H](-)nicotine, [3H]cytisine and [3H]epibatidine binding in relation to vesicular acetylcholine transport sites in the temporal cortex in Alzheimer's disease. Neuroscience 1999; 94: 685–96.DOI: 10.1016/s0306-4522(99)00295-x
- 31 Warpman U & Nordberg A. Epibatidine and ABT 418 reveal selective losses of α4β2 nicotinic receptors in Alzheimer brains. Neuroreport 1995; 6: 2419–23.
- 32 Guan ZZ, Zhang X, Ravid R & Nordberg A. Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer's disease. J Neurochem 2000; 74: 237–43.
- 33 Hellström-Lindahl E, Mousavi M, Zhang X, Ravid R & Nordberg A. Regional distribution of nicotinic receptor subunit mRNAs in human brain: comparison between Alzheimer and normal brain. Mol Brain Res 1999; 66: 94–103.DOI: 10.1016/s0169-328x(99)00030-3
- 34 Newhouse PA, Sunderland T & Tariot PN et al. Intravenous nicotine in Alzheimer's disease: a pilot study. Psycho-pharmacol 1988; 95: 171–5.
- 35 Sahakian B, Jones G, Levy R, Gray J & Warburton D. The effects of nicotine on attention, information processing, and short-term memory in patients with dementia of the Alzheimer type. Br J Psychiatry 1989; 154: 797–800.
- 36 Jones GM, Sahakian BJ, Levy R, Warburton DM & Gray JA. Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer's disease. Psychopharmacol 1992; 108: 485–94.
- 37 Nybäck H, Nordberg A & Långströ B et al. Attempts to visualize nicotinic receptors in the brain of monkey and man by positron emission tomography. Prog Brain Res 1989; 79: 313–19.
- 38 Benwell ME, Balfour DJ & Anderson JM. Evidence that tobacco smoking increases the density of (-)[3H]nicotine binding sites in human brain. J Neurochem 1988; 50: 1243–7.
- 39 Perry DC, Dávila-García MI, Stockmeier CA & Kellar KJ. Increased nicotinic receptors in brains from smokers: mem-brane binding and autoradiography studies. J Pharmacol Exp Ther 1999; 289: 1545–52.
- 40 Nordberg A, Hartvig P & Lilja A et al. Decreased uptake and binding of 11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J Neural Transm [P-D Sect] 1990; 2: 215–24.
- 41 Nordberg A, Lilja A & Lundqvist H et al. Tacrine restores cholinergic nicotinic receptors and glucose metabolism in Alzheimer patients as visualized by positron emission tomography. Neurobiol Aging 1992; 13: 747–58.
- 42 Nordberg A, Lundqvist H & Hartvig P et al. Imaging of nicotinic and muscarinic receptors in Alzheimer's disease: effect of tacrine treatment. Dement Geriatr Cogn Disord 1997; 8: 78–84.
- 43 Olson L, Nordberg A & Von Holst H et al. Nerve growth factor affects [11C]nicotine binding, blood flow, EEG, and verbal episodic memory in an Alzheimer patient (case report). J Neural Transm [P-D Sect] 1992; 4: 79–95.
- 44 Decker MW, Brioni JD & Sullivan JP et al. (S)-3-Methyl-5-(1-methyl-2-pyrrolidinyl)isoxazole (ABT 418): a nove cholinergic ligand with cognition-enhancing and anxiolytic activities: II. In vivo characterization. J Pharmacol Exp Ther 1994; 270: 319–28.
- 45 Arneric SP, Sullivan JP & Briggs CA et al. (S)-3-Methyl-5-(1-methyl-2-pyrrolidinyl) isoxazole (ABT 418): a novel cholinergic ligand with cognition-enhancing and anxiolytic activities: I. In vitro characterization. J Pharmacol Exp Ther 1994; 270: 310–18.
- 46 Sihver W, Fasth KJ & Ögren M et al. In vitro evaluation of 11C-labeled (S)(-)nicotine, (S)-3-methyl-5-(1-methyl-2-pyrrolidinyl)isoxazole, and (R,S)-1-methyl-2-(3-pyridyl)azetidine as nicotinic receptor ligands for positron emission tomography studies. J Neurochem 1998; 71: 1750–60.
- 47 Sihver W, Fasth KJ & Horti AG et al. Synthesis and characterization of binding of 5-[76Br]bromo-3-[[2(S)-azetidinyl]methoxy]pyridine, a novel nicotinic acetylcholine receptor ligand, in rat brain. J Neurochem 1999b; 73: 1264–72.
- 48 Davila-Garcia MI, Musachio JL & Perry DC et al. [125I]IPH, an epibatidine analog, binds with high affinity to neuronal nicotinic cholinergic receptors. J Pharmacol Exp Ther 1997; 282: 445–51.
- 49 Mukhin AG, Gündisch D & Horti AG et al. 5-Iodo-A-85380, an α4β2 subtype-selective ligand for nicotinic acetylcholine receptors. Mol Pharmacol 2000; 57: 642–9.
- 50 Sullivan JP, Donnelly-Robert DL & Briggs CA et al. A-85380 [3-(2(S)-azetidinylmethoxy) pyridine]: in vitro pharmacological properties of a novel, high affinity α4β2 nicotinic acetylcholine receptor ligand. Neuropharmacology 1996; 35: 725–34.DOI: 10.1016/s0028-3908(96)00024-x
- 51 Prince RJ & Sine SM. Epibatidine binds with unique site and state selectivity to muscle nicotinic acetylcholine receptors. J Biol Chem 1998; 263: 7843–9.
- 52 Gerzanich V, Peng X & Wang Fet al. Comparative pharmacology of epibatidine: a potent agonist for neuronal nicotinic acetylcholine receptors. Mol Pharmacol 1995; 48: 774–82.
- 53 Molina PE, Ding YS & Carroll FI et al. Fluoro-norchloroepibatidine: preclinical assessment of acute toxicity. Nucl Med Biol 1997; 24: 743–7.DOI: 10.1016/s0969-8051(97)00120-0
- 54 Xiao Y, Meyer EL, Thompson JM, Surin A, Wroblewski J & Kellar KJ. Rat α3/β4 subtype of neuronal nicotinic acetylcholine receptor stably expressed in a transfected cell line: pharmacology of ligand binding and function. Mol Pharmacol 1998; 101: 322–33.
- 55 Zhang X, Gong ZH, Fasth KJ, Långström B & Nordberg A. Interaction of the nicotinic agonist (R,S)-3-pyridyl-1-methyl-2-(3-pyridyl)-azetidine (MPA) with nicotinic acetylcholine receptor subtypes expressed in cell lines and rat cortex. Neurochem Int 1998; 32: 435–41.DOI: 10.1016/s0197-0186(97)00119-8
- 56 Clarke PB, Schwartz RD, Paul SM, Pert CB & Pert A. Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]α-bungarotoxin. J Neuroscience 1985; 5: 1307–15.
- 57 Härfstrand A, Adem A, Fuxe K, Agnati L, Andersson K & Nordberg A. Distribution of nicotinic cholinergic receptors in the rat tel- and diencephalon: a quantitative receptor autoradiographical study using [3H]acetycholine, [α125I]bungarotoxin and [3H]nicotine. Acta Physiol Scand 1988; 132: 1–14.
- 58 Perry DC & Kellar KJ. [3H]Epibatidine labels nicotinic receptors in rat brain: an autoradiographic study. J Pharmacol Exp Ther 1995; 275: 1030–4.
- 59 Vaupel DB, Mukhin AG, Horti AG, Koren AO & London ED. In vivo studies with [125I]5-I-A-85,380, a nicotinic acetylcholine receptor radioligand. NeuroReport 1998; 9: 2311–17.
- 60 Horti AG, Scheffel U & Koren AO et al. 2-[18F]Fluoro-A-85380, an in vivo tracer for the nicotinic acetylcholine receptors. Nucl Med Biol 1998; 25: 599–603.DOI: 10.1016/s0969-8051(98)00031-6
- 61 Dollé F, Dolci L & Valette H et al. Synthesis and nicotinic acetylcholine receptor in vivo binding properties of 2-fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine: a new positron emission tomography ligand for nicotinic receptors. J Med Chem 1999; 42: 2251–99.
- 62 Valette H, Bottlaender M & Dollé F et al. Characterization of the nicotinic ligand 2-[18F]fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine in vivo. Life Sci 1999; 64: PL93–PL7.
- 63 Valette H, Bottlaender M & Dollé F et al. Imaging central nicotinic acetylcholine receptors in baboons with [18F]fluoro-A-85380. J Nucl Med 1999; 40: 1374–80.
- 64 Scheffel U, Horti AG & Koren AO et al. 6-[18F]Fluoro-A-85380: an in vivo tracer for the nicotinic acetylcholine receptor. Nucl Med Biol 2000; 27: 51–6.DOI: 10.1016/s0969-8051(99)00082-7
- 65 Musachio JL, Scheffel U & Finley PA et al. 5-[125/123I]Iodo-3(2(S)-azetidinylmethoxy)pyridine, a radioiodinated analog of A-85380 for in vivo studies of central nicotinic acetylcholine receptors, Life Sci 1998; 62: PL 351–7.
- 66 Horti AG, Scheffel U & Stathis M et al. Fluorine-18-FPH for PET-imaging of nicotinic acetylcholine receptors. J Nucl Med 1997; 38: 1260–5.
- 67
Musachio JL,
Villemagne VL &
Scheffel U et al.
(125/123I)IPH: a radioiodonated analog of epibatidine for in vivo studies of nicotinic acetylcholine receptors.
Synapse
1997; 26: 392–9.DOI: 10.1002/(sici)1098-2396(199708)26:4<392::aid-syn7>3.0.co;2-1
10.1002/(sici)1098-2396(199708)26:4<392::aid-syn7>3.0.co;2-1 CAS PubMed Web of Science® Google Scholar
- 68 Patt JT, Spang JE, Westera G, Buck A & Schubiger PA. Synthesis and in vivo studies of [11C]N-Methylepibatidine: comparison of the stereoisomers. Nucl Med Biol 1999; 26: 165–73.DOI: 10.1016/s0969-8051(98)00084-5
- 69 Ding YS, Molina PE & Fowler JS et al. Comparative studies of epibatidine derivatives [18F]NFEP and [18F]N-methyl-NFEP: kinetics, nicotine effect, and toxicity. Nucl Med Biol 1999; 26: 139–48.DOI: 10.1016/s0969-8051(98)00070-5
- 70 Valette H, Bottlaender M, Dolle F, Syrota A & Crouzel C. An attempt to visualize brain nicotinic receptors with [11C]-ABT418 and N-[11C]-methylcytisine. Nucl Med Commun 1997; 18: 164–8.
- 71 Sihver W, Fasth KJ & Ögren M et al. In vivo positron emission tomography studies on the novel nicotinic receptor agonist [11C]MPA compared with [11C]ABT-418 and (S)(-)[11C]nicotine in Rhesus monkeys. Nucl Med Biol 1999c; 26: 633–40.DOI: 10.1016/s0969-8051(99)00034-7
- 72 Flood P & Role LW. Neuronal nicotinic acetylcholine receptor modulation by general anesthetics. Toxicol Lett 1998; 100–101: 149–53.
- 73 Violet JM, Downie DL, Nakisa RC, Lieb WR & Franks NP. Differential sensitivities of mammalian neuronal and muscle nicotinic acetylcholine receptors to general anesthetics. Anesthesiology 1997; 86: 866–74.
- 74 Musachio JL, Villemange VL & Scheffel UA et al. Synthesis of an I-123 analog of A-85380 and preliminary SPECT imaging of nicotinic receptors in baboon. Nucl Med Biol 1999; 26: 201–7.DOI: 10.1016/s0969-8051(98)00101-2