Antimicrobial susceptibility of nisin resistant Listeria monocytogenes of dairy origin
Corresponding Author
Beatriz Martínez
Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Carretera de Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
*Corresponding author. Tel.: +34 985 89 33 59; fax: +34 985 89 22 33., E-mail address: [email protected]Search for more papers by this authorAna Rodríguez
Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Carretera de Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
Search for more papers by this authorCorresponding Author
Beatriz Martínez
Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Carretera de Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
*Corresponding author. Tel.: +34 985 89 33 59; fax: +34 985 89 22 33., E-mail address: [email protected]Search for more papers by this authorAna Rodríguez
Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Carretera de Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
Search for more papers by this authorEdited by W. Kneifel
Abstract
The antibiotic susceptibility of wild Listeria monocytogenes strains and their corresponding nisin resistant variants was assessed. The resistant strains were more sensitive to most of the tested antibiotics than their wild-type counterparts. A slight increase in MIC was observed for a few antibiotics including the membrane disturbing polymixin B. Cross-resistance was detected with two synthetic antimicrobial peptides. A lower C15/C17 ratio in the membrane fatty acid composition of the nisin resistant strains was found, and one strain pair showed a significant difference in surface hydrophobicity. As judged by these results, no clear correlation could be established between resistance to nisin and to worldwide-used antibiotics.
References
- [1] Stiles, M.E. (1996) Biopreservation by lactic acid bacteria. Antonie Van Leeuwenhoek 70, 331–345.
- [2] Cleveland, J., Montville, T.J., Nes, I.F., Chikindas, M.L. (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71, 1–20.
- [3] Nes, I.F., Diep, D.B., Havarstein, L.S., Brurberg, M.B., Eijsink, V., Holo, H. (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70, 113–128.
- [4] Moll, G.N., Konings, W.N., Driessen, A.J. (1999) Bacteriocins: mechanism of membrane insertion and pore formation. Antonie Van Leeuwenhoek 76, 185–198.
- [5] Breukink, E., Wiedemann, I., van Kraaij, C., Kuipers, O.P., Sahl, H., de Kruijff, B. (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286, 2361–2364.
- [6] Wiedemann, I., Breukink, E., van Kraaij, C., Kuipers, O.P., Bierbaum, G., de Kruijff, B., Sahl, H.G. (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem. 276, 1772–1779.
- [7] Breuer, B., Radler, F. (1996) Inducible resistance against nisin in Lactobacillus casei. Arch. Microbiol. 165, 114–118.
- [8] Crandall, A.D., Montville, T.J. (1998) Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl. Environ. Microbiol. 64, 231–237.
- [9] Gravesen, A., Kallipolitis, B., Holmstrom, K., Hoiby, P.E., Ramnath, M., Knochel, S. (2004) pbp2229-mediated nisin resistance mechanism in Listeria monocytogenes confers cross-protection to class IIa bacteriocins and affects virulence gene expression. Appl. Environ. Microbiol. 70, 1669–1679.
- [10] Hechard, Y., Pelletier, C., Cenatiempo, Y., Frere, J. (2001) Analysis of sigma(54)-dependent genes in Enterococcus faecalis: a mannose PTS permease (EII(Man)) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147, 1575–1580.
- [11] Gravesen, A., Ramnath, M., Rechinger, K.B., Andersen, N., Jansch, L., Hechard, Y., Hastings, J.W., Knochel, S. (2002) High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology 148, 2361–2369.
- [12] Peschel, A. (2002) How do bacteria resist human antimicrobial peptides. Trends Microbiol. 10, 179–186.
- [13] CEC (2001) Council recommendation on the prudent use of antimicrobial agents. COM (2001) 333 final, vol. I.
- [14] Margolles, A., Mayo, B., de los Reyes-Gavilan, C.G. (1998) Polymorphism of Listeria monocytogenes and Listeria innocua strains isolated from short-ripened cheeses. J. Appl. Microbiol. 84, 255–262.
- [15] Tossi, A., Sandri, L., Giangaspero, A. (2000) Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55, 4–30.
- [16] Zelezetsky, I., Pag, U., Antcheva, N., Sahl, H.G., Tossi, A. (2005) Identification and optimization of an antimicrobial peptide from the ant venom toxin pilosulin. Arch. Biochem. Biophys. 434, 358–364.
- [17] Pag, U., Oedenkoven, M., Papo, N., Oren, Z., Shai, Y., Sahl, H.G. (2004) In vitro activity and mode of action of diastereomeric antimicrobial peptides against bacterial clinical isolates. J. Antimicrob. Chemother. 53, 230–239.
- [18] Gravesen, A., Sorensen, K., Aarestrup, F.M., Knochel, S. (2001) Spontaneous nisin-resistant Listeria monocytogenes mutants with increased expression of a putative penicillin-binding protein and their sensitivity to various antibiotics. Microb. Drug Resist. 7, 127–135.
- [19] Aureli, P., Ferrini, A.M., Mannoni, V., Hodzic, S., Wedell-Weergaard, C., Oliva, B. (2003) Susceptibility of Listeria monocytogenes isolated from food in Italy to antibiotics. Int. J. Food Microbiol. 83, 325–330.
- [20] Margolles, A., Mayo, B., de los Reyes-Gavilan, C. (2001) Susceptibility of Listeria monocytogenes and Listeria innocua strains isolated from short-ripened cheeses to some antibiotics and heavy metal salts. Food Microbiol. 18, 67–73.
- [21] Dykes, G.A., Hastings, J.W. (1998) Fitness costs associated with class IIa bacteriocin resistance in Listeria monocytogenes B73. Lett. Appl. Microbiol. 26, 5–8.
- [22] Mazzotta, A.S., Montville, T.J. (1997) Nisin induces changes in membrane fatty acid composition of Listeria monocytogenes nisin-resistant strains at 10 degrees C and 30 degrees C. J. Appl. Microbiol. 82, 32–38.
- [23] Davies, E.A., Falahee, M.B., Adams, M.R. (1996) Involvement of the cell envelope of Listeria monocytogenes in the acquisition of nisin resistance. J. Appl. Bacteriol. 81, 139–146.
- [24] Mantovani, H.C., Russell, J.B. (2001) Nisin resistance of Streptococcus bovis. Appl. Environ. Microbiol. 67, 808–813.
- [25] Peschel, A., Otto, M., Jack, R.W., Kalbacher, H., Jung, G., Gotz, F. (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274, 8405–8410.
- [26] Mota-Meira, M., LaPointe, G., Lacroix, C., Lavoie, M.C. (2000) MICs of mutacin B-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens. Antimicrob. Agents Chemother. 44, 24–29.
- [27] Diep, D.B., Nes, I.F. (2002) Ribosomally synthesized antibacterial peptides in Gram positive bacteria. Curr. Drug Targets 3, 107–122.
- [28] Park, C.B., Kim, H.S., Kim, S.C. (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun. 244, 253–257.
- [29] Lopez-Solanilla, E., Gonzalez-Zorn, B., Novella, S., Vazquez-Boland, J.A., Rodriguez-Palenzuela, P. (2003) Susceptibility of Listeria monocytogenes to antimicrobial peptides. FEMS Microbiol. Lett. 226, 101–105.
- [30] Friedrich, C.L., Moyles, D., Beveridge, T.J., Hancock, R.E. (2000) Antibacterial action of structurally diverse cationic peptides on Gram-positive bacteria. Antimicrob. Agents Chemother. 44, 2086–2092.
- [31] Vadyvaloo, V., Hastings, J.W., van der Merwe, M.J., Rautenbach, M. (2002) Membranes of class IIa bacteriocin-resistant Listeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols. Appl. Environ. Microbiol. 68, 5223–5230.
- [32] Verheul, A., Russell, N.J., Van'T Hof, R., Rombouts, F.M., Abee, T. (1997) Modifications of membrane phospholipid composition in nisin-resistant Listeria monocytogenes ScottA. Appl. Environ. Microbiol. 63, 3451–3457.