Regulation cascade of flagellar expression in Gram-negative bacteria
Olga A Soutourina
Laboratoire de Biochimie, UMR 7654, CNRS-Ecole Polytechnique, 91128 Palaiseau Cedex, France
Search for more papers by this authorCorresponding Author
Philippe N Bertin
Dynamique, Evolution et Expression de Génomes, Université Louis Pasteur, 28 rue Goethe, 67000 Strasbourg, France
*Corresponding author. Tel.: +33 (3) 90 24 20 08; Fax: +33 (3) 90 24 20 28, E-mail address: [email protected]Search for more papers by this authorOlga A Soutourina
Laboratoire de Biochimie, UMR 7654, CNRS-Ecole Polytechnique, 91128 Palaiseau Cedex, France
Search for more papers by this authorCorresponding Author
Philippe N Bertin
Dynamique, Evolution et Expression de Génomes, Université Louis Pasteur, 28 rue Goethe, 67000 Strasbourg, France
*Corresponding author. Tel.: +33 (3) 90 24 20 08; Fax: +33 (3) 90 24 20 28, E-mail address: [email protected]Search for more papers by this authorAbstract
Flagellar motility helps bacteria to reach the most favourable environments and to successfully compete with other micro-organisms. These complex organelles also play an important role in adhesion to substrates, biofilm formation and virulence process. In addition, because their synthesis and functioning are very expensive for the cell (about 2% of biosynthetic energy expenditure in Escherichia coli) and may induce a strong immune response in the host organism, the expression of flagellar genes is highly regulated by environmental conditions. In the past few years, many data have been published about the regulation of motility in polarly and laterally flagellated bacteria. However, the mechanism of motility control by environmental factors and by some regulatory proteins remains largely unknown. In this respect, recent experimental data suggest that the master regulatory protein-encoding genes at the first level of the cascade are the main target for many environmental factors. This mechanism might require DNA topology alterations of their regulatory regions. Finally, despite some differences the polar and lateral flagellar cascades share many functional similarities, including a similar hierarchical organisation of flagellar systems. The remarkable parallelism in the functional organisation of flagellar systems suggests an evolutionary conservation of regulatory mechanisms in Gram-negative bacteria.
References
- [1] Macnab, R.M. (1996) Flagella and motility. In: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhardt, F.C. et al., Eds.), pp. 123–145. American Society for Microbiology, Washington, DC.
- [2] Fenchel, T (2002) Microbial behavior in a heterogeneous world. Science 296, 1068–1071.
- [3] Childers, S.E, Ciufo, S, Lovley, D.R (2002) Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416, 767–769.
- [4] Stanley, P.M (1983) Factors affecting the irreversible attachment of Pseudomonas aeruginosa to stainless steel. Can. J. Microbiol. 29, 1493–1499.
- [5] Pratt, L.A, Kotler, R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30, 285–293.
- [6] Gardel, C.L, Mekalanos, J.J (1996) Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression. Infect. Immun. 64, 2246–2255.
- [7] Ciacci-Woolwine, F, Blomfield, I.C, Richardson, S.H, Mizel, S.B (1998) Salmonella flagellin induces tumor necrosis factor alfa in a human promocytic cell line. Infect. Immun. 6, 1127–1134.
- [8] Eaton, K.A, Suerbaum, S, Josenhans, C, Krakowka, S (1996) Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect. Immun. 64, 2445–2448.
- [9] Ottemann, K.M, Miller, J.F (1997) Roles for motility in bacteria-host interactions. Mol. Microbiol. 24, 1109–1117.
- [10] Josenhans, C, Suerbaum, S (2002) The role of motility as a virulence factor in bacteria. Int. J. Med. Microbiol. 291, 605–614.
- [11] Hayashi, F, Smith, K.D, Ozinsky, A, Hawn, T.R, Yi, E.C, Goodlett, D.R, Eng, J.K, Akira, S, Underhill, D.M, Aderem, A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103.
- [12] Dangl, J.L, Jones, J.D.G (2001) Plant pathogens and integrated defence responses to infection. Nature 411, 826–833.
- [13] Smith, K.D, Ozinsky, A (2002) Toll-like receptor-5 and the innate immune response to bacterial flagellin. Curr. Top. Microbiol. Immunol. 270, 93–108.
- [14] Akerley, B.J, Miller, J.F (1993) Flagellin gene transcription in Bordetella bronchiseptica is regulated by the BvgAS virulence control system. J. Bacteriol. 175, 2468–2479.
- [15] Akerley, B.J, Monack, D.M, Falkow, S, Miller, J.F (1992) The bvgAS locus negatively controls motility and synthesis of flagella in Bordetella bronchiseptica. J. Bacteriol. 174, 980–990.
- [16] Tominaga, A, Mahmoud, M.A, Mukaihara, T, Enomoto, M (1994) Molecular characterization of intact, but cryptic, flagellin genes in the genus Shigella. Mol. Microbiol. 12, 277–285.
- [17] Kapatral, V, Olson, J.W, Pepe, J.C, Miller, V.L, Minnich, S.A (1996) Temperature-dependent regulation of Yersinia enterocolitica class III flagellar genes. Mol. Microbiol. 19, 1061–1071.
- [18] Parkhill, J, Wren, B.W, Thomson, N.R, Titball, R.W, Holden, M.T, Prentice, M.B (2001) Complete genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527.
- [19] Moens, S, Vanderleyden, J (1996) Function of bacterial flagella. Crit. Rev. Microbiol. 22, 67–100.
- [20] Thomas, N.A, Bardy, S.L, Jarrell, K.F (2001) The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS Microbiol. Rev. 25, 147–174.
- [21] Joys, T.M (1988) The flagellar filament protein. Can. J. Microbiol. 34, 452–458.
- [22] Wilson, D.R, Beveridge, T.J (1993) Bacterial flagellar filaments and their component flagellins. Can. J. Microbiol. 39, 451–472.
- [23] McCarter, L.L (1995) Genetic and molecular characterization of the polar flagellum of Vibrio parahaemolyticus. J. Bacteriol. 177, 1595–1609.
- [24] Tarrand, J.J, Krieg, N.R, Dobereiner, J (1978) A taxonomic study of the Spirillum lipoferum group with description of a new genus Azospirillum gen. nov. and two species Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol. 24, 967–980.
- [25] Komeda, Y (1982) Fusions of flagellar operons to lactose genes on a Mu lac bacteriophage. J. Bacteriol. 150, 16–26.
- [26] Komeda, Y (1986) Transcriptional control of flagellar genes in Escherichia coli K-12. J. Bacteriol. 168, 1315–1318.
- [27] Kutsukake, K, Ohya, Y, Iino, T (1990) Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J. Bacteriol. 172, 741–747.
- [28]
Arora, S.K,
Ritchings, B.W,
Almira, E.C,
Lory, S,
Ramphal, R (1997) A transcriptional activator, FleQ, regulates mucin adhesion and flagellar gene expression in Pseudomonas aeruginosa in a cascade manner.
J. Bacteriol. 179, 5574–5581.
10.1111/j.1365-2958.2005.04960.x Google Scholar
- [29] Ritchings, B.W, Almira, E.C, Lory, S, Ramphal, R (1995) Cloning and phenotypic characterization of fleS and fleR, new response regulators of Pseudomonas aeruginosa which regulate motility and adhesion to mucin. Infect. Immun. 63, 4868–4876.
- [30] Klose, K.E, Mekalanos, J.J (1998) Distinct roles of an alternative sigma factor during free-swimming and colonizing phases of the Vibrio cholerae pathogenic cycle. Mol. Microbiol. 28, 501–520.
- [31] Prouty, M.G, Correa, N.E, Klose, K.E (2001) The novel σ54- and σ28-dependent flagellar gene transcription hierarchy of Vibrio cholerae. Mol. Microbiol. 39, 1595–1609.
- [32] Claret, L, Hughes, C (2000) Rapid turnover of FlhD and FlhC, the flagellar regulon transcriptional activator proteins, during Proteus swarming. J. Bacteriol. 182, 833–836.
- [33] Li, C, Louise, C.J, Shi, W, Adler, J (1993) Adverse conditions which cause lack of flagella in Escherichia coli. J. Bacteriol. 175, 2229–2235.
- [34] Shi, W, Li, C, Louise, C, Adler, J (1993) Mechanism of adverse conditions causing lack of flagella in Escherichia coli. J. Bacteriol. 175, 2236–2240.
- [35] Soutourina, O.A, Krin, E, Laurent-Winter, C, Hommais, F, Danchin, A, Bertin, P.N (2002) Regulation of bacterial motility in response to low pH in Escherichia coli: the role of H-NS protein. Microbiology 148, 1543–1551.
- [36] Bertin, P, Terao, E, Lee, E.H, Lejeune, P, Colson, C, Danchin, A, Collatz, E (1994) The H-NS protein is involved in the biogenesis of flagella in Escherichia coli. J. Bacteriol. 176, 5537–5540.
- [37] Soutourina, O, Kolb, A, Krin, E, Laurent-Winter, C, Rimsky, S, Danchin, A, Bertin, P (1999) Multiple control of flagellum biosynthesis in Escherichia coli: Role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J. Bacteriol. 181, 7500–7508.
- [38] Romeo, T (1998) Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol. Microbiol. 29, 1321–1330.
- [39] Wei, B.L, Brun-Zinkernagel, A.-M.B, Simecka, J.W, Pruss, B, Babitzke, P, Romeo, T (2001) Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol. Microbiol. 40, 245–256.
- [40] Komeda, Y, Kutsukake, K, Iino, T (1980) Definition of additional flagellar genes in Escherichia coli K12. Genetics 94, 277–290.
- [41] Kutsukake, K, Ohya, Y, Yamagushi, S, Iino, T (1988) Operon structure of flagellar genes in Salmonella typhimurium. Mol. Gen. Genet. 214, 11–15.
- [42] Kim, Y.K, McCarter, L.L (2000) Analysis of the polar flagellar gene system of Vibrio parahaemolyticus. J. Bacteriol. 182, 3693–3704.
- [43]
Ohnishi, I,
Kutsukake, K,
Suzuki, H,
Iino, T (1990) Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium.
Mol. Gen. Genet. 221, 1139–1147.
10.1007/BF00261713 Google Scholar
- [44] Kutsukake, K, Iyoda, S, Ohnishi, K, Iino, T (1994) Genetic and molecular analyses of the interaction between the flagellum-specific sigma and anti-sigma factors in Salmonella typhimurium. EMBO J. 13, 4568–4576.
- [45] Ohnishi, I, Kutsukake, K, Suzuki, H, Iino, T (1992) A novel transcriptional regulatory mechanism in the flagellar regulon of Salmonella typhimurium: an anti-sigma factor inhibits the activity of the flagellum-specific sigma factor σ F. Mol. Microbiol. 6, 3149–3157.
- [46] Hughes, K.T, Gillen, K.L, Semon, M.J, Karlinsey, J.E (1993) Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262, 277–280.
- [47] Wu, J, Newton, A (1997) Regulation of the Caulobacter flagellar gene hierarchy: not just for motility. Mol. Microbiol. 24, 233–239.
- [48] Reitzer, L.J, Magasanik, B (1986) Transcription of glnA in E. coli is stimulated by activator bound to sites far from the promoter. Cell 45, 785–792.
- [49] Porter, S.C., North, A.K. and Kustu, S. (1995) Mechanism of transcriptional activation by NTRC. In: Two-component Signal Transduction (Hoch, J.A. and Silhavy, T.J., Eds.), pp. 147–158. American Society for Microbiology Press, Washington, DC.
- [50] Klose, K.E, Mekalanos, J.J (1998) Differential regulation of multiple flagellins in Vibrio cholerae. J. Bacteriol. 180, 303–316.
- [51] McCarter, L.L (2001) Polar flagellar motility of the Vibrionaceae. Microbiol. Mol. Biol. Rev. 65, 445–462.
- [52] McCarter, L.L, Wright, M.E (1993) Identification of genes encoding components of the swarmer cell flagellar motor and propeller and a sigma factor controlling differentiation of Vibrio parahaemolyticus. J. Bacteriol. 175, 3361–3371.
- [53] Ballado, T, Camarena, L, Gonzalez-Pedrajo, B, Silva-Herzog, E, Dreyfus, G (2001) The hook gene (flgE) is expressed from the flgBCDEF operon in Rhodobacter sphaeroides: study of an flgE mutant. J. Bacteriol. 183, 1680–1687.
- [54] Garcia, N, Campos, A, Osorio, A, Poggio, S, Gonzalez-Pedrajo, B, Camarena, L, Dreyfus, G (1998) The flagellar switch genes fliM and fliN of Rhodobacter sphaeroides are contained in a large flagellar gene cluster. J. Bacteriol. 180, 3978–3982.
- [55] Poggio, S, Aguilar, C, Osorio, A, Gonzalez-Pedrajo, B, Dreyfus, G, Camarena, L (2000) Sigma-54 promoters control expression of genes encoding the hook and basal body complex in Rhodobacter sphaeroides. J. Bacteriol. 182, 5787–5792.
- [56] Spohn, G, Scarlato, V (1999) Motility of Helicobacter pylori is coordinately regulated by the transcriptional activator FlgR, an NtrC homolog. J. Bacteriol. 181, 593–599.
- [57] Jagannathan, A, Constantinidou, C, Penn, C.W (2001) Roles of rpoN, fliA, and flgR in expression of flagella in Campylobacter jejuni. J. Bacteriol. 183, 2937–2942.
- [58] Sourjik, V, Muschler, P, Scharf, B, Schmitt, R (2000) VisN and VisR are global regulators of chemotaxis, flagellar, and motility genes in Sinorhizobium (Rhizobium) meliloti. J. Bacteriol. 182, 782–788.
- [59] Ordal, G.W., Marquez-Magana, L. and Chamberlin, M.J. (1993) Motility and chemotaxis. In: Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics (Sonenshein, A.L. et al., Eds.), pp. 123–145. American Society for Microbiology, Washington, DC.
- [60] Mirel, D.B, Lauer, P, Chamberlin, M.J (1994) Identification of flagellar synthesis regulatory and structural genes in a σD-dependent operon of Bacillus subtilis. J. Bacteriol. 176, 4492–4500.
- [61] West, J.T, Estacio, W, Marquez-Magana, L (2000) Relative roles of the fla/che P-A, PD-3, and P-sigD promoters in regulating motility and sigD expression in Bacillus subtilis. J. Bacteriol. 182, 4841–4848.
- [62] Pruss, B (2000) FlhD, a transcriptional regulator in bacteria. Recent Res. Dev. Microbiol. 4, 31–42.
- [63] Chilcott, G.S, Hughes, K.T (2000) Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica Serovar typhimurium and Escherichia coli. Microbiol. Mol. Biol. Rev. 64, 694–708.
- [64] Liu, X, Matsumura, P (1994) The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J. Bacteriol. 176, 7345–7351.
- [65] Yanagihara, S, Iyoda, S, Ohnishi, K, Iino, T, Kutsukake, K (1999) Structure and transcriptional control of the flagellar master operon of Salmonella typhimurium. Genes Genet. Syst. 74, 105–111.
- [66] Bartlett, D.H, Frantz, B.B, Matsumura, P (1988) Flagellar transcriptional activators FlbB and FlaI: gene sequences and 5′ consensus sequences of operons under FlbB and FlaI control. J. Bacteriol. 170, 1575–1581.
- [67] Claret, L, Hughes, C (2002) Interaction of the atypical prokaryotic transcription activator FlhD2C2 with early promoters of the flagellar gene hierarchy. J. Mol. Biol. 321, 185–199.
- [68] Liu, X, Fujita, N, Ishihama, A, Matsumura, P (1995) The C-terminal region of the α subunit of Escherichia coli RNA polymerase is required for transcriptional activation of the flagellar level II operons by the FlhD/FlhC complex. J. Bacteriol. 177, 5186–5188.
- [69] Campos, A, Zhang, R, Alkire, R, Matsumura, P, Westbrook, E (2001) Crystal structure of the global regulator FlhD from Escherichia coli at 1.8 Å resolution. Mol. Microbiol. 39, 567–580.
- [70] Campos, A, Matsumura, P (2001) Extensive alanine scanning reveals protein-protein and protein-DNA interaction surfaces in the global regulator FlhD from Escherichia coli. Mol. Microbiol. 39, 581–594.
- [71] Claret, L, Hughes, C (2000) Functions of the subunits in the FlhD(2)C(2) transcriptional master regulator of bacterial flagellum biogenesis and swarming. J. Mol. Biol. 303, 467–478.
- [72] Wang, S, Matsumura, P, Westbrook, E.M (2001) Crystallization and preliminary X-ray crystallographic analysis of FlhD/FlhC complex from Escherichia coli. Acta Crystallogr. D 57, 734–736.
- [73] Soutourina, O.A, Semenova, E.A, Parfenova, V.V, Danchin, A, Bertin, P (2001) Control of bacterial motility by environmental factors in polarly flagellated and peritrichous bacteria isolated from Lake Baikal. Appl. Environ. Microbiol. 67, 3852–3859.
- [74] Brun, Y.V, Shapiro, L (1992) A temporally controlled σ-factor is required for polar morphogenesis and normal cell division in Caulobacter. Genes Dev. 6, 2395–2408.
- [75] Casaz, P, Happel, A, Keithan, J, Read, D.L, Strain, S.R, Levy, S.B (2001) The Pseudomonas fluorescens transcription activator AdnA is required for adhesion and motility. Microbiology 147, 355–361.
- [76] Totten, P.A, Lara, J.C, Lory, S (1990) The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J. Bacteriol. 172, 389–396.
- [77] Hirschman, J, Wong, P.-K, Sei, K, Keener, J, Kustu, S (1985) Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in vitro: evidence that the ntrA product is a σ factor. Proc. Natl. Acad. Sci. USA 82, 7525–7529.
- [78] Ishimoto, K.S, Lory, S (1989) Formation of pilin in Pseudomonas aeruginosa requires the alternative σ factor (RpoN) subunit of RNA polymerase. Proc. Natl. Acad. Sci. USA 86, 1954–1957.
- [79] Jyot, J, Dasgupta, N, Ramphal, R (2002) FleQ, the major flagellar gene regulator in Pseudomonas aeruginosa, binds to enhancer sites located either upstream or atypically downstream of the RpoN binding site. J. Bacteriol. 184, 5251–5260.
- [80] Pelton, J.G, Kustu, S, Wemmer, D.E (1999) Solution structure of the DNA-binding domain of NtrC with three alanine substitutions. J. Mol. Biol. 292, 1095–1110.
- [81] Volkman, B.F, Nohaile, M.J, Kustu, S, Wemmer, D.E (1995) Three-dimensional solution structure of the N-terminal receiver domain of NtrC. Biochemistry 34, 1413–1424.
- [82] Stock, J.B, Stock, A.M, Mottonen, J.M (1990) Signal transduction in bacteria. Nature 344, 395–400.
- [83] Beier, D, Frank, R (2000) Molecular characterization of two-component systems of Helicobacter pylori. J. Bacteriol. 182, 2068–2076.
- [84] Stock, J.B. and Surette, M.G. (1996) Chemotaxis. In: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhardt, F.C. et al., Eds.), pp. 1103–1129. American Society for Microbiology, Washington, DC.
- [85] Aizawa, S.-I, Harwood, C.S, Kadner, R.J (2000) Signaling components in bacterial locomotion and sensory reception. J. Bacteriol. 182, 1459–1471.
- [86] Armitage, J.P (1999) Bacterial tactic responses. Adv. Microb. Physiol. 41, 229–289.
- [87] Adler, J, Templeton, B (1967) The effect of environmental conditions on the motility of Escherichia coli. J. Gen. Microbiol. 46, 175–184.
- [88] Guzzo, A, Diorio, C, DuBow, M.S (1991) Transcription of the Escherichia coli fliC gene is regulated by metal ions. Appl. Environ. Microbiol. 57, 2255–2259.
- [89] Landini, P, Zehnder, A.J (2002) The global regulatory hns gene negatively affects adhesion to solid surfaces by anaerobically grown Escherichia coli by modulating expression of flagellar genes and lipopolysaccharide production. J. Bacteriol. 184, 1522–1529.
- [90] Walker, S.L, Sojka, M, Dibb-Fuller, M, Woodward, M.J (1999) Effect of pH, temperature and surface contact on the elaboration of fimbriae and flagella by Salmonella serotype Enteritidis. J. Med. Microbiol. 48, 253–261.
- [91] Alm, R.A, Guerry, P, Trust, T.J (1993) The Campylobacter σ54 flaB flagellin promoter is subject to environmental regulation. J. Bacteriol. 175, 4448–4455.
- [92] Kiiyukia, C, Kawakami, H, Hashimoto, H (1993) Effect of sodium chloride, pH and organic nutrients on the motility of Vibrio cholerae non-O1. Microbios 73, 249–255.
- [93] Kunin, C.M, Hua, T.H, Bakaletz, L.O (1995) Effect of salicylate on expression of flagella by Escherichia coli and Proteus, Providencia, and Pseudomonas spp. Infect. Immun. 63, 1796–1799.
- [94] D'Mello, A, Yotis, W.W (1987) The action of sodium deoxycholate on Escherichia coli. Appl. Environ. Microbiol. 53, 1944–1946.
- [95] Roessler, M, Muller, V (2002) Chloride, a new environmental signal molecule involved in gene regulation in a moderately halophilic bacterium, Halobacillus halophilus. J. Bacteriol. 184, 6207–6215.
- [96] Rashid, M.H, Kornberg, A (2000) Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 97, 4885–4890.
- [97] Kapatral, V, Minnich, S.A (1995) Co-ordinate, temperature-sensitive regulation of the three Yersinia enterocolitica flagellin genes. Mol. Microbiol. 17, 49–56.
- [98] Peel, M, Donachie, W, Shaw, A (1988) Physical and antigenic heterogeneity in the flagellins of Listeria monocytogenes and L. ivanovii. J. Gen. Microbiol. 134, 2593–2598.
- [99] Ott, M, Messner, P, Hessemann, J, Marre, R, Hacker, J (1991) Temperature dependent expression of flagella in Legionella. J. Gen. Microbiol. 137, 1955–1961.
- [100] Negrete-Abascal, E, Reyes, M.E, Garcia, R.M, Vaca, S, Giron, J.A, Garcia, O, Zenteno, E, de la Garza, M (2003) Flagella and motility in Actinobacillus pleuropneumoniae. J. Bacteriol. 185, 664–668.
- [101] Skorupski, K, Taylor, R.K (1997) Control of the ToxR virulence regulon in Vibrio cholerae by environmental stimuli. Mol. Microbiol. 25, 1003–1009.
- [102] Strauss, E.J (1995) Bacterial pathogenesis. When a turn off is a turn on. Curr. Biol. 5, 706–709.
- [103] Camilli, A, Mekalanos, J.J (1995) Use of resombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol. Microbiol. 18, 671–683.
- [104] Akerley, B.J, Cotter, P.A, Miller, J.F (1995) Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction. Cell 80, 611–620.
- [105] Akerley, B.J, Miller, J.F (1996) Understanding signal transduction during bacterial infection. Trends Microbiol. 4, 141–146.
- [106] Coote, J.G (2001) Environmental sensing mechanisms in Bordetella. Adv. Microb. Physiol. 44, 141–181.
- [107] Goodier, R.I, Ahmer, B.M.M (2001) SirA orthologs affect both motility and virulence. J. Bacteriol. 183, 2249–2258.
- [108] Hammer, B.K, Tateda, E.S, Swanson, M.S (2002) A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila. Mol. Microbiol. 44, 107–118.
- [109] Suzuki, K, Wang, X, Weilbacher, T, Pernestig, A.K, Melefors, O, Georgellis, D, Babitzke, P, Romeo, T (2002) Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J. Bacteriol. 184, 5130–5140.
- [110] Boles, B.R, McCarter, L.L (2002) Vibrio parahaemolyticus scrABC, a novel operon affecting swarming and capsular polysaccharide regulation. J. Bacteriol. 184, 5946–5956.
- [111] Yokota, T, Gots, J (1970) Requirement of adenosine 3′,5′-cyclic monophosphate for flagellation in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 103, 513–516.
- [112] Komeda, Y.H.S, Ishidsu, J.I, Iino, T (1975) The role of cAMP in flagellation of Salmonella typhimurium. Mol. Gen. Genet. 142, 289–298.
- [113] Silverman, M, Simon, M (1974) Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J. Bacteriol. 120, 1196–1203.
- [114] Vogler, A.P, Lengeler, J.W (1987) Indirect role of adenylate cyclase and cyclic AMP in chemotaxis to phosphotransferase system carbohydrates in Escherichia coli K-12. J. Bacteriol. 169, 593–599.
- [115] Shi, W, Zhou, Y, Wild, J, Adler, J, Gross, C.A (1992) DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli. J. Bacteriol. 174, 6256–6263.
- [116] Shin, S, Park, C (1995) Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J. Bacteriol. 177, 4696–4702.
- [117] Pruss, B.M (1998) Acetyl phosphate and the phosphorylation of OmpR are involved in the regulation of the cell division rate in Escherichia coli. Arch. Microbiol. 170, 141–146.
- [118] Fuqua, C, Winans, S.C, Greenberg, E.P (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269–275.
- [119] Sperandio, V, Torres, A.G, Kaper, J.B (2002) Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol. Microbiol. 43, 809–821.
- [120] Zhu, J, Miller, M.B, Vance, R.E, Dziejman, M, Bassler, B.L, Mekalanos, J.J (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 99, 3129–3134.
- [121] Diggle, S.P, Winzer, K, Lazdunski, A, Williams, P, Camara, M (2002) Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J. Bacteriol. 184, 2576–2586.
- [122] Anderson, P, Bauer, W (1978) Supercoiling in closed circular DNA: dependence upon ion type and concentration. Biochemistry 17, 594–601.
- [123] Goldstein, E, Drlica, K (1984) Regulation of bacterial DNA supercoiling: plasmid linking number vary with growth temperature. Proc. Natl. Acad. Sci. USA 81, 4046–4050.
- [124] Higgins, C.F, Cairney, J, Stirling, D.A, Sutherland, L, Booth, I.R (1987) Osmotic regulation of gene expression: ionic strength as an intracellular signal. Trends Biochem. Sci. 12, 339–344.
- [125] Higgins, C.F, Dorman, C.J, Stirling, D.A, Waddell, L, Booth, I.R, May, G, Bremer, E (1988) A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52, 569–584.
- [126] Hommais, F, Krin, E, Laurent-Winter, C, Soutourina, O, Malpertuy, A, le Caer, J.-P, Danchin, A, Bertin, P (2001) Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol. Microbiol. 40, 20–36.
- [127] Hulton, C.S.J, Seirafi, A, Hinton, J.C.D, Sidebotham, J, Waddell, L, Pavitt, G.D, Owen-Hughes, T, Spassky, A, Buc, H, Higgins, C (1990) Histone-like protein H1 (H-NS), DNA supercoiling, and gene expression in bacteria. Cell 63, 631–642.
- [128] Marshall, D.G, Bowe, F, Hale, C, Dougan, G, Dorman, C.J (2000) DNA topology and adaptation of Salmonella typhimurium to an intracellular environment. Phil. Trans. R. Soc. Lond. B 355, 565–574.
- [129] Nishida, S, Mizushima, T, Miki, T, Sekimizu, K (1997) Immotile phenotype of an Escherichia coli mutant lacking the histone-like protein HU. FEMS Microbiol. Lett. 150, 297–301.
- [130] Mizushima, T, Koyanagi, R, Katayama, T, Miki, T, Sekimizu, K (1997) Decrease in expression of the master operon of flagellin synthesis in a dnaA46 mutant of Escherichia coli. Biol. Pharm. Bull. 20, 327–331.
- [131] Osuna, R, Lienau, D, Hughes, K.T, Johnson, R.C (1995) Sequence, regulation, and function of fis in Salmonella typhimurium. J. Bacteriol. 177, 2021–2032.
- [132] Hay, N.A, Tipper, D.J, Gygi, D, Hughes, C (1997) A nonswarming mutant of Proteus mirabilis lacks the Lrp global transcriptional regulator. J. Bacteriol. 179, 4741–4746.
- [133] Hinton, J.C.D, Santos, D.S, Seirafi, A, Hulton, C.J, Pavitt, G.D, Higgins, C.F (1992) Expression and mutational analysis of the nucleoid-associated protein H-NS of Salmonella typhimurium. Mol. Microbiol. 6, 2327–2337.
- [134] Nasser, W, Faelen, M, Hugouvieux-Cotte-Pattat, N, Reverchon, S (2001) Role of the nucleoid-associated protein H-NS in the synthesis of virulence factors in the phytopathogenic bacterium Erwinia chrysanthemi. Mol. Plant Microbe Interact. 14, 10–20.
- [135] Soutourina, O. (2001) Control of Gene Expression in the Motility Process in Gram-negative Bacteria. Ph.D. Thesis, University of Versailles-Saint-Quentin, Paris.
- [136] Condon, C, Putzer, H, Luo, D, Grunberg-Manago, M (1997) Processing of the Bacillus subtilis thrS leader mRNA is RNase E-dependent in Escherichia coli. J. Mol. Biol. 268, 235–242.
- [137] Putzer, H., Grunberg-Manago, M. and Springer, M. (1995) Bacterial aminoacyl-tRNA synthetases: genes and regulation of expression. In: tRNA: Structure, Biosynthesis and Function (Soll, D. and RajBhandary, U.L., Eds.), pp. 293–333. American Society for Microbiology, Washington, DC.
- [138] Sacerdot, C, Caillet, J, Graffe, M, Eyermann, F, Ehresmann, B, Ehresmann, C, Springer, M, Romby, P (1998) The Escherichia coli threonyl-tRNA synthetase gene contains a split ribosomal binding site interrupted by a hairpin structure that is essential for autoregulation. Mol. Microbiol. 29, 1077–1090.
- [139] Winstanley, C, Morgan, A.W (1997) The bacterial flagellin gene as a biomarker for detection, population genetics and epidemiological analysis. Microbiology 143, 3071–3084.
- [140] Quon, K.C, Marczynski, G.T, Shapiro, L (1996) Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84, 83–93.
- [141] Rohde, J.R, Fox, J.M, Minnich, S.A (1994) Thermoregulation in Yersinia enterocolitica is coincident with changes in DNA supercoiling. Mol. Microbiol. 12, 187–199.
- [142] Sanchez-Campillo, M, Shaynoor, D, Gomez-Gomez, J.M, Michel, E, Dehoux, P, Cossart, P, Baquero, F, Perez-Diaz, J.C (1995) Modulation of DNA topology by flaR, a new gene from Listeria monocytogenes. Mol. Microbiol. 18, 801–811.
- [143] Salanoubat, M, Genin, S, Artiguenave, F, Gouzy, J, Mangenot, S, Arlat, M (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415, 497–502.
- [144] Furness, R.B, Fraser, G.M, Hay, N.A, Hughes, C (1997) Negative feedback from a Proteus class II flagella export defect to the flhDC master operon controlling cell division and flagellum assembly. J. Bacteriol. 179, 5585–5588.
- [145] Dufour, A, Furness, R.B, Hughes, C (1998) Novel genes that upregulate the Proteus mirabilis flhDC master operon controlling flagellar biogenesis and swarming. Mol. Microbiol. 29, 741–751.
- [146] Li, X, Rasko, D.A, Lockatell, C.V, Johnson, D.E, Mobley, H.L.T (2001) Repression of bacterial motility by a novel fimbrial gene product. EMBO J. 20, 4854–4862.
- [147] Ko, M, Park, C (2000) H-NS-dependent regulation of flagellar synthesis is mediated by a LysR family protein. J. Bacteriol. 182, 4670–4672.
- [148] Lehnen, D, Blumer, C, Polen, T, Wackwitz, B, Wendisch, V.F, Unden, G (2002) LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol. Microbiol. 45, 521–532.
- [149] Tomoyasu, T, Ohkishi, T, Ukyo, Y, Tokumitsu, A, Takaya, A, Suzuki, M, Sekiya, K, Matsui, H, Kutsukake, K, Yamamoto, T (2002) The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar typhimurium. J. Bacteriol. 184, 645–653.
- [150] Campoy, S, Jara, M, Busquets, N, Perez de Rozas, A.M, Badiola, I, Barbe, J (2002) Intracellular cyclic AMP concentration is decreased in Salmonella typhimurium fur mutants. Microbiology 148, 1039–1048.
- [151] Kutsukake, K (1997) Autogenous and global control of the flagellar master operon, flhD, in Salmonella typhimurium. Mol. Gen. Genet. 254, 440–448.
- [152] Yokota, T, Kuwahara, S (1974) Adenosine 3′,5′-cyclic monophosphate-deficient mutants of Vibrio cholerae. J. Bacteriol. 120, 106–113.
- [153] Skorupski, K, Taylor, R.K (1997) Sequence and functional analysis of the gene encoding Vibrio cholerae cAMP receptor protein. Gene 198, 273–303.
- [154] Stover, C.K, Pham, X.Q, Erwin, A.L, Mizoguchi, S.D, Warrener, P, Hickey, M.J, Brinkman, F.S.L (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964.
- [155] Dasgupta, N, Ferrell, E.P, Kanack, K.J, West, S.E.H, Ramphal, R (2002) fleQ, the gene encoding the major flagellar regulator of Pseudomonas aeruginosa, is σ70 dependent and is downregulated by Vfr, a homolog of Escherichia coli cyclic AMP receptor protein. J. Bacteriol. 184, 5240–5250.
- [156] Oberto, J, Rouviere-Yaniv, J (1996) Serratia marcescens contains a heterodimeric HU protein like Escherichia coli and Salmonella typhimurium. J. Bacteriol. 178, 293–297.
- [157] Delic-Attree, I, Toussaint, B, Vignais, P.M (1995) Cloning and sequence analysis of the genes coding for the integration host factor (IHF) and HU proteins of Pseudomonas aeruginosa. Gene 154, 61–64.
- [158] Bartels, F, Fernandez, S, Holtel, A, Timmis, K.N, De Lorenzo, V (2001) The essential HupB and HupN proteins of Pseudomonas putida provide redundant and nonspecific DNA-bending functions. J. Biol. Chem. 276, 16641–16648.
- [159] Micka, B, Groch, N, Heinemann, U, Marahiel, M.A (1991) Molecular cloning, nucleotide sequence, and characterization of the Bacillus subtilis gene encoding the DNA-binding protein HBsu. J. Bacteriol. 173, 3191–3198.
- [160] Tendeng, C, Badaut, C, Krin, E, Gounon, P, Ngo, S, Danchin, A, Rimske, S, Bertin, P (2000) Isolation and characterization of vicH, encoding a new pleiotropic regulator in Vibrio cholerae. J. Bacteriol. 182, 2026–2032.
- [161] Kunst, F, Ogasawara, N, Moszer, I, Albertini, A.M, Alloni, G (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.
- [162] Pruss, B.M, Matsumura, P (1996) A regulator of the flagellar regulon of Escherichia coli, flhD, also affects cell division. J. Bacteriol. 178, 668–674.
- [163] Pruss, B.M, Matsumura, P (1997) Cell cycle regulation of flagellar genes. J. Bacteriol. 179, 5602–5604.
- [164] Byrne, B, Swanson, M.S (1998) Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect. Immun. 66, 3029–3034.
- [165] Pruss, B.M, Liu, X, Hendrickson, W, Matsumura, P (2001) FlhD/FlhC-regulated promoters analysed by gene array and lacZ gene fusions. FEMS Microbiol. Lett. 9854, 1–7.
- [166] Pruss, B.M, Campbell, J.W, Van Dyk, T.K, Zhu, C, Kogan, Y, Matsumura, P (2003) FlhD/FlhC is a regulator of anaerobic respiration and the Entner-Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. J. Bacteriol. 185, 534–543.
- [167] Young, G.M, Schmiel, D.H, Miller, V.L (1999) A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc. Natl. Acad. Sci. USA 96, 6456–6461.
- [168] Schmiel, D.H, Young, G.M, Miller, V.L (2000) The Yersinia enterocolitica phospholipase gene yplA is part of the flagellar regulon. J. Bacteriol. 182, 2314–2320.
- [169] Bleves, S, Marenne, M.-N, Detry, G, Cornelis, G.R (2002) Up-regulation of the Yersinia enterocolitica yop regulon by deletion of the flagellum master operon flhDC. J. Bacteriol. 184, 3214–3223.
- [170] Givskov, M, Molin, S (1992) Expression of extracellular phospholipase from Serratia liquefaciens is growth-phase dependent, catabolite repressed and regulated by anaerobiosis. Mol. Microbiol. 6, 1363–1374.
- [171] Givskov, M, Ebert, L, Christiansen, G, Benedik, M.J, Molin, S (1995) Induction of phospholipase- and flagellar synthesis in Serratia liquefaciens is controlled by expression of the flagellar master operon flhDC. Mol. Microbiol. 15, 445–454.
- [172] Givaudan, A, Lanois, A (2000) flhDC, the flagellar master operon of Xenorhabdus nematophilus: Requirement for motility, lipolysis, extracellular hemolysis, and full virulence in insects. J. Bacteriol. 182, 107–115.
- [173] Liu, J.H, Lai, M.J, Ang, S, Shu, J.W, Soo, P.C, Horng, Y.T, Yi, W.C, Lai, H.C, Luh, K.T, Ho, S.W, Swift, S (2000) Role of flhDC in the expression of the nuclease gene nucA, cell division and flagellar synthesis in Serratia marcescens. J. Biomed. Sci. 7, 475–483.
- [174] Eberl, L, Christiansen, G, Molin, S, Givskov, M (1996) Differentiation of Serratia liquefaciens into swarm cells is controlled by the expression of the flhDC master operon. J. Bacteriol. 178, 554–559.
- [175] Robleto, E.A, Lopez-Hernandez, I, Silby, M.W, Levy, S.B (2003) Genetic analysis of the AdnA regulon in Pseudomonas fluorescens: nonessential role of flagella in adhesion to sand and biofilm formation. J. Bacteriol. 185, 453–460.
- [176] Glagolev, A.N, Skulachev, V.P (1978) The proton pump is a molecular engine of motile bacteria. Nature 272, 280–282.
- [177] Khan, S, Macnab, R.M (1980) Proton chemical potential, proton electrical potential and bacterial motility. J. Mol. Biol. 138, 599–614.
- [178] Hase, C.C, Mekalanos, J.J (1999) Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 96, 3183–3187.
- [179] Lowe, G, Meister, M, Berg, H.C (1987) Rapid rotation of flagellar bundles in swimming bacteria. Nature 325, 637–640.
- [180] Magariyama, Y, Sugiyama, S, Muramoto, K, Maekawa, I, Kawagishi, I, Imae, Y. Very fast flagellar rotation. Nature. 371, 1994. 752
- [181] Atsumi, T, McCarter, L, Imae, Y (1992) Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature 355, 182–184.
- [182] Atsumi, T, Maekawa, Y, Yamada, T, Kawagishi, I, Imae, Y, Homma, M (1996) Effect of viscosity on swimming by the lateral and polar flagellar of Vibrio alginolyticus. J. Bacteriol. 178, 5024–5026.
- [183] Gosink, K.K, Hase, C.C (2000) Requirements for conversion of the Na+-driven flagellar motor of Vibrio cholerae to the H+-driven motor of Escherichia coli. J. Bacteriol. 182, 4234–4240.
- [184] McGee, K, Horstendt, P, Milton, D.L (1996) Identification and characterization of additional flagellin genes from Vibrio anguillarum. J. Bacteriol. 178, 5188–5198.
- [185] Totten, P.A, Lory, S (1990) Characterization of the type a flagellin gene from Pseudomonas aeruginosa PAK. J. Bacteriol. 172, 7188–7199.
- [186] Nelson, K.E, Weinel, C, Paulsen, I.T, Dodson, R.J, Hilbert, H, Martins dos Santos, V.A, Fouts, D.E (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4, 799–808.
- [187] Heidelberg, J.F, Eisen, J.A, Nelson, W.C, Clayton, R.A, Gwinn, M.L, Dodson, R.J, Haft, D.H, Hickey, E.K, Peterson, J.D (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477–483.
- [188] Hengge-Aronis, R (1999) Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr. Opin. Microbiol. 2, 148–152.
- [189] Relaix, F, Buckingham, M (1999) From insect eye to vertebrate muscle: redeployment of a regulatory network. Genes Dev. 13, 3171–3178.
- [190] Huang, S (1999) Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. J. Mol. Med. 77, 469–480.
- [191] Thompson, J.D, Higgins, D.G, Gibson, T.J (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.