On the Einstein–Weyl geometrical system with the central quadric ansatz: The associated dispersionless integrable hierarchy
Yuxiao Du
School of Mathematics, Hefei University of Technology, Hefei, China
Search for more papers by this authorKelei Tian
School of Mathematics, Hefei University of Technology, Hefei, China
Search for more papers by this authorYing Xu
School of Mathematics, Hefei University of Technology, Hefei, China
Search for more papers by this authorCorresponding Author
Ge Yi
School of Mathematics, Hefei University of Technology, Hefei, China
Correspondence
Ge Yi, School of Mathematics, Hefei University of Technology, Hefei 230601, China.
Email: [email protected]
Search for more papers by this authorYuxiao Du
School of Mathematics, Hefei University of Technology, Hefei, China
Search for more papers by this authorKelei Tian
School of Mathematics, Hefei University of Technology, Hefei, China
Search for more papers by this authorYing Xu
School of Mathematics, Hefei University of Technology, Hefei, China
Search for more papers by this authorCorresponding Author
Ge Yi
School of Mathematics, Hefei University of Technology, Hefei, China
Correspondence
Ge Yi, School of Mathematics, Hefei University of Technology, Hefei 230601, China.
Email: [email protected]
Search for more papers by this authorAbstract
In this paper, we focus on a typical integrable dispersionless equation, which corresponds to an Einstein–Weyl geometrical equation with the central quadric ansatz. It can be considered as a (2+1)-dimensional dispersionless integrable system arising from the commutation condition of the Lax pair of a one-parameter family of vector fields. The associated dispersionless integrable hierarchy with infinite symmetries is defined, and the Lax–Sato equations are obtained. Meanwhile, two types of reductions of the hierarchy are shown.
REFERENCES
- 1Hitchin, N.: Complex manifolds and Einstein's equations. In: Primorsko: Twistor Geometry and Non-Linear Systems. Lecture Notes in Mathematics, vol. 970, pp. 73–99. Springer, Berlin, Heidelberg (1982)
10.1007/BFb0066025 Google Scholar
- 2Jones, P.E., Tod, K.P.: Minitwistor spaces and Einstein-Weyl spaces. Class. Quant. Grav. 2(4), 565–577 (1985)
- 3Pedersen, H., Tod, K.P.: Three dimensional Einstein-Weyl geometry. Adv. Math. 97(1), 74–109 (1993)
10.1006/aima.1993.1002 Google Scholar
- 4Ward, R.S.: Einstein-Weyl spaces and SU() Toda fields. Class. Quant. Grav. 7(4), L95–L98 (1990)
10.1088/0264-9381/7/4/003 Google Scholar
- 5Dunajski, M., Masonand, L.J., Tod, P.: Einstein-Weyl geometry, the dKP equation and twistor theory. J. Geom. Phys. 37(1-2), 63–93 (2001)
10.1016/S0393-0440(00)00033-4 Google Scholar
- 6Dunajski, M., Tod, P.: Einstein-Weyl spaces and dispersionless Kadomtsev-Petviashvili equation from Painlevé I and II. Phys. Lett. A 303(4), 253–264 (2002)
10.1016/S0375-9601(02)01258-6 Google Scholar
- 7Godlinski, M., Nurowski, P.: On three-dimensional Weyl structures with reduced holonomy. Class. Quant. Grav. 23(3), 603–608 (2006)
10.1088/0264-9381/23/3/003 Google Scholar
- 8Dunajski, M.: An interpolating dispersionless integrable system. J. Phys. A 4(31), 315202 (2008)
- 9Zakharov, V.E., Shabat, A.B.: Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II. Funct. Anal. Its Appl. 13(3), 166–174 (1979)
10.1007/BF01077483 Google Scholar
- 10Kodama, Y., Gibbons, J.: Integrability of the dispersionless KP hierarchy. In: Proceedings of the 4th Workshop on Nonlinear and Turbulent Processes in Physics, World Scientific, Singapore (1990)
- 11Takasaki, K.: Dispersionless Toda hierarchy and two-dimensional string theory. Commun. Math. Phys. 170(1), 101–116 (1995)
- 12Takasaki, K., Takebe, T.: Integrable hierarchies and dispersionless limit. Rev. Math. Phys. 7(5), 743–808 (1995)
10.1142/S0129055X9500030X Google Scholar
- 13Takasaki, K.: Symmetries and tau function of higher dimensional dispersionless integrable hierarchies, Jour. Math. Phys. 36(7), 3574–3607 (1995)
10.1063/1.530983 Google Scholar
- 14Bogdanov, L.V.: A class of multidimensional integrable hierarchies and their reductions. Theor. Math. Phys. 160(1), 887–893 (2009)
10.1007/s11232-009-0078-3 Google Scholar
- 15Dunajski, M.: A class of Einstein-Weyl spaces associated to an integrable system of hydrodynamic type. J. Geom. Phys. 51(1), 126–137 (2004)
10.1016/j.geomphys.2004.01.004 Google Scholar
- 16Dunajski, M., Ferapontov, E.V., Kruglikov, B.: On the Einstein-Weyl and conformal self-duality equations. J. Math. Phys. (59), 083501–083510 (2015)
10.1063/1.4927251 Google Scholar
- 17Ferapontov, E.V., Kruglikov, B.: Dispersionless integrable systems in 3D and Einstein-Weyl geometry. J. Differ. Geom. 97, 215–254 (2014)
10.4310/jdg/1405447805 Google Scholar
- 18Pavlov, M.V.: Integrable hydrodynamic chains. J. Math. Phys. 44, 4134–4156 (2003)
- 19Ferapontov, E.V., Huard, B., Zhang, A.: On the central quadric ansatz: integrable models and Painlevé reductions. J. Phys. A: Math. Theor. 45, 195–204 (2012)
10.1088/1751-8113/45/19/195204 Google Scholar
- 20Calderbank, D.M.J.: Integrable Background Geometries. SIGMA. 10(2), 034 (2014)
- 21Yi, G.: On the dispersionless Davey-Stewartson hierarchy: Zakharov-Shabat equations, twistor structure and Lax-Sato formalism. Z. Angew. Math. Mech. 102(8), e202100435 (2022)
- 22Manakov, S.V., Santini, P.M.: Inverse scattering problem for vector fields and the Cauchy problemfor the heavenly equation. Phys. Lett. A 359, 613–619 (2006)
- 23Manakov, S.V., Santini, P.M.: The Cauchy problem on the plane for the dispersionless Kadomtsev-Petviashvili equation. JETP Lett. 83, 462–466 (2006)
- 24Manakov, S.V., Santini, P.M.: The dispersionless 2D Toda equation: dressing, Cauchy problem, longtime behaviour, implicit solutions and wave breaking. J. Phys. A: Math. Gener. 42, 095203 (2009)
10.1088/1751-8113/42/9/095203 Google Scholar
- 25Yi, G.: On the dispersionless Davey-Stewartson system: Hamiltonian vector field Lax pair and relevant nonlinear Riemann-Hilbert problem for dDS-II system. Lett. Math. Phys. 110(3), 445–463 (2020)
10.1007/s11005-019-01224-5 Google Scholar
- 26Yi, G., Santani, P.M.: The inverse spectral transform for the Dunajski hierarchy and some of its reductions, I: Cauchy problem and longtime behavior of solutions. J. Phys. A: Math. Theor. 48, 215203 (2015)
10.1088/1751-8113/48/21/215203 Google Scholar
- 27Manakov, S.V., Santini, P.M.: A hierarchy of integrable partial differential equations in 2+1 dimensions associated with one-parameter families of one-dimensional vector fields. Theor. Math. Phys. 152(1), 1004–1011 (2007)
10.1007/s11232-007-0084-2 Google Scholar
- 28Manakov, S.V., Santini, P.M.: On the solutions of the second heavenly and Pavlov equations. J. Phys. A: Math. Theor. 42, 404013 (2009)
10.1088/1751-8113/42/40/404013 Google Scholar
- 29Bogdanov, L.V., Dryuma, V.S., Manakov, S.V.: Dunajski generalization of the second heavenly equation: dressing method and the hierarchy. J Phys. A: Math. Theor. 40(48), 14383–14393 (2007)
10.1088/1751-8113/40/48/005 Google Scholar
- 30Dickey, L.A.: Soliton Equations and Hamiltonian Systems 2nd ed.. World Scientific, Singapore (2003)
10.1142/5108 Google Scholar