Finite element analysis for the 2D/3D unsteady incompressible Darcy–Brinkman equations with double-diffusive convection based on the penalty method
Corresponding Author
Demin Liu
College of Mathematics and System Science, Xinjiang University, Urumqi, P. R. China
Correspondence
Demin Liu, College of Mathematics and System Science, Xinjiang University, Urumqi 830046, P. R. China.
Email: [email protected]
Search for more papers by this authorLinlin Jiang
College of Mathematics and System Science, Xinjiang University, Urumqi, P. R. China
Search for more papers by this authorCorresponding Author
Demin Liu
College of Mathematics and System Science, Xinjiang University, Urumqi, P. R. China
Correspondence
Demin Liu, College of Mathematics and System Science, Xinjiang University, Urumqi 830046, P. R. China.
Email: [email protected]
Search for more papers by this authorLinlin Jiang
College of Mathematics and System Science, Xinjiang University, Urumqi, P. R. China
Search for more papers by this authorAbstract
In this paper, the penalty finite element method for the 2D/3D unsteady incompressible Darcy–Brinkman equations with double-diffusive convection (IDBDDC) is considered. The introduction of penalty term could overcome the divergence-free restriction about the velocity field, allowing only a set of decoupled elliptic equations to be solved. Firstly, some a priori regularity estimations of the weak solutions to the penalized IDBDDC are derived, and then the optimal error estimation for the penalized IDBDDC is also derived. Furthermore, the Euler semi-implicit method is proposed as a time-stepping technique for the penalized IDBDDC. Based on the above regularity results, the unconditional stability and optimal error estimates for the Euler semi-implicit method are established. Finally, the effectiveness of the proposed method is demonstrated by several numerical experiments.
REFERENCES
- 1Schmitt, R W.: Double diffusion in oceanography. Annu. Rev. Fluid Mech. 26(1), 255–285 (1994)
- 2Marotzke, J.: Abrupt climate change and thermohaline circulation: Mechanisms and predictability. Proc. Natl. Acad. Sci. USA 97(4), 1347–1350 (2000)
- 3Trevisan, OV., Bejan, A.: Natural convection with combined heat and mass transfer buoyancy effects in a porous medium. Int. J. Heat Mass Transfer 28(8), 1597–1611 (1985)
- 4Shao, Q., Fahs, M., Younes, A., et al.: A high-accurate solution for Darcy-Brinkman double-diffusive convection in saturated porous media. Numer. Heat Transf. B-Fund. 69(1), 26–47 (2016)
- 5Zhao, P., Chen, C.F.: Stability analysis of double-diffusive convection in superposed fluid and porous layers using a one-equation model. Int. J. Heat Mass Transfer 44(24), 4625–4633 (2001)
- 6Mojtabi, A., Charrier-Mojtabi, M.C.: Double-diffusive convection in porous media. In: K. Vafai, H. Hadim (eds.) Handbook of Porous Media. Marcel Dekker, New York(2000)
- 7Straughan, B.: Stability and Wave Motion in Porous Media. Springer Science & Business Media, New York (2008)
- 8Goyeau, B., Songbe, J.P., Gobin, D.: Numerical study of double-diffusive natural convection in a porous cavity using the Darcy-Brinkman formulation. Int. J. Heat Mass Transfer 39(7), 1363–1378 (1996)
- 9Šarler, B., Perko, J., Gobin, D., et al.: Dual reciprocity boundary element method solution of natural convection in Darcy-Brinkman porous media. Eng. Anal. Boundary Elem. 28(1), 23–41 (2004)
- 10Cibik, A., Kaya, S.: Finite element analysis of a projection-based stabilization method for the Darcy-Brinkman equations in double-diffusive convection. Appl. Numer. Math. 64, 35–49 (2013)
- 11Eroglu, F.G., Kaya, S., Rebholz, L.G.: POD-ROM for the Darcy-Brinkman equations with double-diffusive convection. J. Numer. Math. 27(3), 123–139 (2019)
- 12Shen, J.: On error estimates of the penalty method for unsteady Navier-Stokes equations. SIAM J. Numer. Anal. 32(2), 386–403 (1995)
- 13Burman, E., Fernndez, MA.: Galerkin finite element methods with symmetric pressure stabilization for the transient Stokes equations: Stability and convergence analysis. SIAM J. Numer. Anal. 47(1), 409–439 (2009)
10.1137/070707403 Google Scholar
- 14Masud, A., Khurram, RA.: A multiscale finite element method for the incompressible Navier-Stokes equations. Comput. Meth. Appl. Mech. Eng. 195(13–16), 1750–1777 (2006)
- 15Guermond, JL., Shen, J.: Velocity-correction projection methods for incompressible flows. SIAM J. Numer. Anal. 41(1), 112–134 (2003)
- 16Guermond, JL, Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Meth. Appl. Mech. Eng. 195(44–47), 6011–6045 (2006)
- 17Ren, Y., Liu, D.: Research on three kinds of splitting finite element schemes for 2D/3D unsteady incompressible thermomicropolar fluid equations. Int. J. Numer. Methods Fluids 95(7), 1148–1173 (2023)
- 18Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Amer. Math. Soc. 49(12), 1–23 (1943)
10.1090/S0002-9904-1943-07818-4 Google Scholar
- 19Temam, R.: Une méthode d'approximation de la solution des équations de Navier-Stokes. Bull. Soc. Math. France 98, 115–152 (1968)
10.24033/bsmf.1662 Google Scholar
- 20He, Y.: Optimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes equations. Math. Comput. 74(251), 1201–1216 (2005)
- 21He, Y., Li, J.: A penalty finite element method based on the Euler implicit/explicit scheme for the time-dependent Navier-Stokes equations. J. Comput. Appl. Math. 235(3), 708–725 (2010)
- 22Liu, D., Guo, J.: A priori estimates of the unsteady incompressible thermomicropolar fluid equations and its numerical analysis based on penalty finite element method. Commun. Nonlinear Sci. Numer. Simul. 137, 108175 (2024)
- 23Kadiri, M., Louaked, M., Mechkour, H.: Hydrodynamic design optimization using non stationary porous media model. J. Comput. Appl. Math. 386, 113193 (2021)
- 24Shi, K., Feng, X., Su, H.: Optimal error estimate of the penalty method for the 2D/3D time-dependent MHD equations. Numer. Algorithms 93(3), 1337–1371 (2023)
- 25Khodayari-Samghabadi, S., Momeni-Masuleh, SH., Malek, A.: An explicit-extended penalty Galerkin method for solving an incompressible two-phase flow. Appl. Numer. Math. 107, 48–63 (2016)
- 26Reddy, J.N.: Penalty-Finite Element Methods in Mechanics. Paper presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, New York, November 14–19, 1982.
- 27Oden, J.T.: Penalty method and reduced integration for the analysis of fluids. In: Reddy, J.N. (ed.) Penalty-Finite Element Methods in Mechanics: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, New York, November 14–19, 1982.
- 28Liu, D.: Penalty nite element approximation for the Brinkman-Forchheimer equations. Chin. J. Eng. Math. 34(05), 517–533 (2017)
- 29Dai, X., Tang, P., Wu, M.: Analysis of an iterative penalty method for Navier-Stokes equations with nonlinear slip boundary conditions. Int. J. Numer. Methods Fluids 72(4), 403–413 (2013)
- 30Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunford/Gauthier-Villars, Dunod, Paris (1969)
- 31Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19(2), 275–311 (1982)
- 32Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam (1984)
- 33Brefort, B., Ghidaglia, J.M., Temam, R.: Attractors for the penalized Navier-Stokes equations. SIAM J. Math. Anal. 19(1), 1–21 (1988)
- 34Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, New York-Heidelberg-Berlin (1986)
10.1007/978-3-642-61623-5 Google Scholar
- 35 FreeFem++, Version 4.9, 2021. https://github.com/FreeFem/FreeFem-sources/releases
- 36Eichel, H., Tobiska, L., Xie, H.: Supercloseness and superconvergence of stabilized low-order finite element discretizations of the Stokes problem. Math. Comput. 80(274), 697–722 (2011)
- 37Sankhavara, C.D., Shukla, H.J.: Numerical investigation of natural convection in a partitioned rectangular enclosure. Numer. Heat Transf. A Appl. 50(10), 975–997 (2006)
- 38Huang, P., Zhao, J., Feng, X.: Highly efficient and local projection-based stabilized finite element method for natural convection problem. Int. J. Heat Mass Transfer 83, 357–365 (2015)