The Fresnel equations of classical and extended electrodynamics – a review
Corresponding Author
Elena A. Ivanova
Higher School of Theoretical Mechanics and Mathematical Physics, Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg, Russia
Institute for Problems in Mechanical Engineering of Russian Academy of Sciences, Saint-Petersburg, Russia
Correspondence
Elena A. Ivanova, Higher School of Theoretical Mechanics and Mathematical Physics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251, Saint-Petersburg, Russia.
Email: [email protected]
Search for more papers by this authorWolfgang H. Müller
Institut für Mechanik Fachgebiet Kontinuumsmechanik und Materialtheorie, Technische Universität Berlin, Berlin, Germany
Search for more papers by this authorWilhelm Rickert
Institut für Mechanik Fachgebiet Kontinuumsmechanik und Materialtheorie, Technische Universität Berlin, Berlin, Germany
Search for more papers by this authorElena N. Vilchevskaya
Institut für Mechanik Fachgebiet Kontinuumsmechanik und Materialtheorie, Technische Universität Berlin, Berlin, Germany
Search for more papers by this authorCorresponding Author
Elena A. Ivanova
Higher School of Theoretical Mechanics and Mathematical Physics, Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg, Russia
Institute for Problems in Mechanical Engineering of Russian Academy of Sciences, Saint-Petersburg, Russia
Correspondence
Elena A. Ivanova, Higher School of Theoretical Mechanics and Mathematical Physics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251, Saint-Petersburg, Russia.
Email: [email protected]
Search for more papers by this authorWolfgang H. Müller
Institut für Mechanik Fachgebiet Kontinuumsmechanik und Materialtheorie, Technische Universität Berlin, Berlin, Germany
Search for more papers by this authorWilhelm Rickert
Institut für Mechanik Fachgebiet Kontinuumsmechanik und Materialtheorie, Technische Universität Berlin, Berlin, Germany
Search for more papers by this authorElena N. Vilchevskaya
Institut für Mechanik Fachgebiet Kontinuumsmechanik und Materialtheorie, Technische Universität Berlin, Berlin, Germany
Search for more papers by this authorAbstract
We study the behavior of electromagnetic waves near the interface between two media: a dielectric medium and a conducting medium leading to the so-called Fresnel equations. We discuss analytical solutions of the problem in the framework of classical as well as extended electrodynamics. As a didactic add-on a rational derivation of the classical Fresnel equations in conducting media by using a consistent application of vector representation for the wave vectors is presented for the benefit of the reader. The Fresnel equations obtained in the framework of extended electrodynamics are novel. We also discuss three mechanical models of electrodynamic processes in conducting media. The mathematical description of two of them allows one to obtain classical Maxwell's equations. The third model combines the two first models. Its mathematical description allows one to obtain the equations of extended electrodynamics.
REFERENCES
- 1Stratton, J.A.: Electromagnetic Theory. McGraw-Hill Book Company, New York and London (1941)
- 2Ordal, M.A., Long, L.L., Bell, R.J., Bell, S.E., Bell, R.R., Alexander, R.W., Ward, C.A.: Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Opt. 22(7), 1099–1119 (1983)
- 3Bennett, J.M.: Precise method for measuring the absolute phase change on reflection. J. Opt. Soc. Am. 54(5), 612–624 (1964)
10.1364/JOSA.54.000612 Google Scholar
- 4Schulz, L.G.: The optical constants of silver, gold, copper, and aluminum. I. The absorption coefficient k. J. Opt. Soc. Am. 44(5), 357–362 (1954)
- 5Schulz, L.G., Tangherlini, F.R.: Optical constants of silver, gold, copper, and aluminum. II. The index of refraction n. J. Opt. Soc. Am. 44(5), 362–368 (1954)
- 6Harasaki, A., Schmit, J., Wyant, J.C.: Offset of coherent envelope position due to phase change on reflection. Appl. Opt. 40(13), 2102–2106 (2001)
- 7Dubois, A.: Effects of phase change on reflection in phase-measuring interference microscopy. Appl. Opt. 43(7), 1503–1507 (2004)
- 8Ma, F., Liu, X.: Phase shift and penetration depth of metal mirrors in a microcavity structure. Appl. Opt. 46(25), 6247–6250 (2007)
- 9Vassos, E., Churm, J., Feresidis, A.: Ultra-low-loss tunable piezoelectric-actuated metasurfaces achieving or dynamic phase shift at millimeter-waves. Sci. Rep. 10(15679), (2020)
- 10Willis, K.J., Hagness, S.C., Knezevic, I.: A generalized Drude model for doped silicon at terahertz frequencies derived from microscopic transport simulation. Appl. Phys. Lett. 102(12), (2013)
- 11Gonçalves, A., Ribeiro, M.A., Gunha, J.V., Somer, A., Zanuto, V.S., Astrath, N.G.C., Dias, D.T., dos Santos, M.A.F., Jacinto, C., Lenzi, E.K., Novatski, A.: A generalized Drude–Lorentz model for refractive index behavior of tellurite glasses. J. Mater. Sci. Mater. Electron. 30, 16949–16955 (2019)
- 12Wen, H., Xiao, H., Xu, W., Cheng, X., Qin, J., Xiao, Y., He, B., Li, H.: A generalized Drude–Smith model for ultrafast pump-and-probe experiments and its application for studying of electronic dynamic properties of polycrystalline diamond. Opt. Commun. 544, 129619 (2023)
- 13Whittaker, E.: A History of the Theories of Aether and Electricity. The Classical Theories. Thomas Nelson and Sons Ltd, London (1910)
- 14MacCullagh, J.: The Collected Works of James Mac Cullagh. Hewitt and Haughton (eds.). Dublin University Press Series, (1880)
- 15Zhilin, P.A.: Modeling of the electromagnetic field based on rational mechanics approach. ZAMM Z. fur Angew. Math. Mech. 103(4), e202302004 (2023)
- 16Ivanova, E.A.: A new approach to modeling of thermal and electrical conductivities by means of the Cosserat continuum. Continuum Mech. Thermodyn. 34(5), 1313–1342 (2022)
- 17Ivanova, E.: Thermo-electrodynamics of conductive media based on the nonlinear viscoelastic Cosserat continuum of a special type. Acta Mech. 234(12), 6205–6249 (2023)
- 18Hayt, W.H., Buck, J.A.: Engineering Electromagnetics. McGraw-Hill, New York (2012)
- 19Sadiku, M.N.O.: Elements of Electrodynamics. Oxford University Press, New York (2014)
- 20Steer, M.: Microwave and RF Design: A System Approach. SciTech Publishing, Raleigh NC (2010)
- 21Pozar, D.M.: Microwave Engineering. Wiley, Hoboken (2011)
- 22Ivanova, E.A., Vilchevskaya, E.N., Müller, W.H.: Time derivatives in material and spatial description — what are the differences and why do they concern us? In: Advanced Methods of Continuum Mechanics for Materials and Structures, pp. 3–28. Springer, Berlin (2016)
10.1007/978-981-10-0959-4_1 Google Scholar
- 23Ivanova, E.A., Vilchevskaya, E.N., Müller, W.H.: A study of objective time derivatives in material and spatial description. In: Mechanics for Materials and Technologies. Advanced Structured Materials, vol. 46, pp. 195–229. Springer, Cham (2017)
10.1007/978-3-319-56050-2_11 Google Scholar
- 24Müller, W.H., Vilchevskaya, E.N., Eremeyev, V.A.: Electrodynamics from the viewpoint of modern continuum theory–a review. ZAMM Z. fur Angew. Math. Mech. 103(4), e202200179 (2023)
- 25Truesdell, C., Toupin, R.A.: The Classical Field Theories. Springer, Heidelberg (1960)
10.1007/978-3-642-45943-6_2 Google Scholar
- 26 Relative permittivity. Wikipedia. https://en.wikipedia.org/wiki/Relative_permittivity (2024)
- 27 Permeability (electromagnetism). Wikipedia. https://en.wikipedia.org/wiki/Permeability_(electromagnetism)#Relative_permeability_and_magnetic_susceptibility (2024)
- 28Orfanidis, S.J.: Electromagnetic Waves and Antennas. Rutgers University, New Brunswick, New Jersey, USA (2002)
- 29Feynman, R.P., Leigthon, R.B., Sands, M.: Lectures on Physics Vol. II, Mainly Electromagnetism and Matter. Addison Wesley, Reading (1964)
- 30Makarov, A.M., Ljunova, L.A., Makarov, K.A.: On some effects when a plane harmonic electromagnetic wave is incident on the dielectric-conductor interface. Bulletin of the Moscow State Technical University named after N.E. Bauman. Series Natural Sciences 2, 57–71 (2009)
- 31Riad, S.M., Salama, I.M.: Electromagnetic Fields and Waves: Fundamentals of Engineering. McGraw Hill, New York (2020)
- 32Weizel, W.: Lehrbuch der Theoretischen Physik, Erster Band Physik der Vorgänge. Springer-Verlag, Berlin (1963)
10.1007/978-3-642-87337-9 Google Scholar
- 33Milsom, J.A.: Why are the electric and magnetic fields in an electromagnetic wave propagating through a conductor not in phase? Eur. J. Phys. 44(5), 055203 (2023)
- 34Rickert, W.: An investigation of the electromagnetic coupling problem by means of a rational framework and selected experiments. Ph.D. thesis, TU Berlin (2023). https://depositonce.tu-berlin.de/items/137eb7d9-da9f-445f-9c21-310f9be4a965
- 35Griffiths, D.J.: Introduction to Electrodynamics Fourth Edition. Pearson, Boston (2021)
- 36Jackson, J.D.: Classical electrodynamics, 3rd ed. John Wiley & Sons, New York (1999)
- 37Hecht, E.: Optics, Fourth Edition. Addison Wesley, San Francisco (2002)
- 38Koester, C.J.: Phase shift effects in Fabry-Perot interferometry. J. Res. Natl. Bur. Stand A Phys. Chem. 64(3), 191 (1960)
10.6028/jres.064A.020 Google Scholar
- 39Bennett, H.E., Bennett, J.M.: Validity of the Drude theory for Silver, Gold and Aluminum in the Infrared. North-Holland, Amsterdam (1966)
- 40Doi, T., Toyoda, K., Tanimura, Y.: Effects of phase changes on reflection and their wavelength dependence in optical profilometry. Appl. Opt. 36(28), 7157–7161 (1997)
- 41Ma, F., Liu, X.: Phase shift and penetration depth of metal mirrors in a microcavity structure. Appl. Opt. 46(25), 6247–6250 (2007)
- 42Müller, W.H., Ivanova, E.A., Vilchevskaya, E.N.: On attempts to interpret Maxwell's equations mechanically – a review. In: New Achievements in Mechanics: A Tribute to Klaus Peter Herrmann, pp. 263–299. Springer, Cham (2024)
10.1007/978-3-031-56132-0_12 Google Scholar
- 43Ivanova, E.A.: Modeling of thermal and electrical conductivities by means of a viscoelastic Cosserat continuum. Continuum Mech. Thermodyn. 34(2), 555–586 (2022)
- 44Zhang, D., Ostoja-Starzewski, M.: Telegraph equation: two types of harmonic waves, a discontinuity wave, and a spectral finite element. Acta Mech. 230, 1725–1743 (2019)
- 45Strecker, K.: Hilfsbuch für die Elektrotechnik: Schwachstromausgabe (Fernmeldetechnik), Zehnte Auflage, Band 1. Springer-Verlag, Berlin, Heidelberg (1928)
- 46Acosta, S., Acosta, P.: Numerical wave scattering taking account of energy dissipation and media stiffness as modeled by the telegraph equation. SIAM Undergraduate Research Online 1, 100–119 (2008)
10.1137/08S010153 Google Scholar
- 47Sommerfeld, A.: Zur Elektronentheorie der Metalle aufgrund der Fermischen Statistik. Physik 47, 1–32 (1928)
- 48Sommerfeld, A., Bethe, H.: Elektronentheorie der Metalle. Handbuch der Physik 24/2, 333–622 (1933)
- 49Drude, P.: Zur Elektronentheorie der Metalle; I. Teil. Ann. Phys. 306(3), 566–613 (1900)
10.1002/andp.19003060312 Google Scholar
- 50Drude, P.: Zur Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und thermomagnetische Effecte. Ann. Phys. 308(11), 369–402 (1900)
10.1002/andp.19003081102 Google Scholar
- 51Drude, P.: Optische Eigenschaften und Elektronentheorie, 1. Teil. Ann. Phys. 319(9), 677–725 (1904)
10.1002/andp.19043190903 Google Scholar
- 52Drude, P.: Optische Eigenschaften und Elektronentheorie, 2. Teil. Ann. Phys. 319(9), 936–961 (1904)
10.1002/andp.19043191004 Google Scholar
- 53 Drude model. Wikipedia. https://en.wikipedia.org/wiki/Drude_model (2024)
- 54Zener, C.: Remarkable optical properties of the alkali metals. Nature 132(3347), 968–968 (1933)
- 55Mott, N.F., Zener, C.: The optical properties of metals. Math. Proc. Cambridge Philos. Soc. 30(2), 249–270 (1934)
- 56Li, H.Y., Zhou, S.M., Li, J., Chen, Y.L., Wang, S.Y., Shen, Z.C., Chen, L.Y., Liu, H., Zhang, X.X.: Analysis of the Drude model in metallic films. Appl. Opt. 40(34), 6307–6311 (2001)