Two-phase flow of dusty Carreau nanofluid with dual-Cattaneo–Christov heat flux and non-uniform heat source over a disk
D. Serafin Grace
Department of Mathematics, SAS, Vellore Institute of Technology, Chennai, India
Search for more papers by this authorCorresponding Author
P. Durgaprasad
Department of Mathematics, SAS, Vellore Institute of Technology, Chennai, India
Correspondence
P. Durgaprasad, Department of Mathematics, SAS, Vellore Institute of Technology, Chennai-600127, India.
Email: [email protected]
Search for more papers by this authorD. Serafin Grace
Department of Mathematics, SAS, Vellore Institute of Technology, Chennai, India
Search for more papers by this authorCorresponding Author
P. Durgaprasad
Department of Mathematics, SAS, Vellore Institute of Technology, Chennai, India
Correspondence
P. Durgaprasad, Department of Mathematics, SAS, Vellore Institute of Technology, Chennai-600127, India.
Email: [email protected]
Search for more papers by this authorAbstract
The main aim of the present work is to examine a mathematical model for the flow and heat transfer characteristics of a Carreau nanofluid with suspended dust particles over a rotating disk. It explores the influence of dual Cattaneo–Christov heat flux models, which combine relaxation and thermal retardation effects, on the temperature distribution in the fluid. By integrating theoretical models with real-world engineering problems, this study advances our understanding of expertise in optimizing systems such as dusty flows and nanofluids. The BVP4C built-in solver in MATrix LABoratory (MATLAB) software is used to solve the governing equations using the shooting technique. A graphic representation of the relationship between temperature, velocity, concentration, skin friction coefficients, heat, and mass transfer rates over the rotating disk is displayed for a range of values of the pertinent parameters, such as interaction parameter , Weissenberg number , mass concentration Hartmann number , Thermal radiation , Thermophoresis , Brownian motion , fluid temperature , Space-dependent parameter , the specific heat ratio . The Graphs and tables illustrate the impacts of active parameters on the fluid's transport properties. An increase in Hartmann's number decelerates the radial and azimuthal velocities for fluid and dusty flow cases. For the radiation parameter (Rd = 0.5), the Nusselt number is 4.8. When the Radiation parameter increases to 1.5, the Nusselt number improves to 6.3, representing a 31.25% enhancement in heat transfer efficiency. Also, it was observed that the temperature profile increases as the Nusselt number rises, indicating better thermal transport due to thermophoretic forces.
REFERENCES
- 1Feynman, R.P., Leighton, R.B., Sands, M., Hafner, E.M.: The feynman lectures on physics; vol. i. Am. J. Phys. 33(9), 750–752 (1965). https://doi.org/10.1119/1.1972241
- 2Nakagawa, Y., Raadu, M.A.: On practical representation of magnetic field. Sol. Phys. 25, 127–135 (1972). https://doi.org/10.1007/BF00155751
- 3Alfvén, H.: On the existence of electromagnetic-hydrodynamic waves. Ark. Mat. Astr. Fys. 29B(2), 1–7 (1943)
- 4Stern, D.P.: The motion of magnetic field lines. Space Sci. Rev. 6(2), 147–173 (1966). https://doi.org/10.1007/BF00222592
- 5Gangawane, K.M.: Effect of angle of applied magnetic field on natural convection in an open-ended cavity with partially active walls. Chem. Eng. Res. Des. 127, 22–34 (2017). https://doi.org/10.1016/j.cherd.2017.09.006
- 6Norani, A.A., Jiann, L.Y., Kamal, M.H.A., Shafie, S., Rawi, N.A.: The effects of an aligned magnetic field on nanofluid flow with Newtonian heating. CFD Lett. 16(4), 111–119 (2024). https://doi.org/10.37934/cfdl.16.4.111119
10.37934/cfdl.16.4.111119 Google Scholar
- 7Hiremath, P.N., Shettar, B.M., Madhukesh, J.K., Ramesh, G.K.: Radiative flux and slip flow of Reiner–Rivlin liquid in the presence of aligned magnetic field. J. Therm. Anal. Calorim. 148, 11945–11954 (2023). https://doi.org/10.1007/s10973-023-12482-w
- 8Pao, H.-P.: Magnetohydrodynamic flows over a rotating disk. AIAA J. 6(7), 1285–1291 (1968). https://doi.org/10.2514/3.4735
- 9Khashi'ie, N.S., Hamzah, K.B., Waini, I., Zainal, N.A., Nordin, S.K.S., Kasim, A.R.M., Ioanpop: Response surface methodology of the unsteady axisymmetric magnetic hybrid nanofluid flow subject to a shrinking disk. J. Adv. Res. Appl. Mech. 112(1), 137–148 (2023). https://doi.org/10.37934/aram.112.1.137148
10.37934/aram.112.1.137148 Google Scholar
- 10Arain, M.B., Zeeshan, A., Bhatti, M.M., Alhodaly, M.S., Ellahi, R.: Description of non-Newtonian bioconvective Sutterby fluid conveying tiny particles on a circular rotating disk subject to induced magnetic field. J. Cent. South Univ. 30(8), 2599–2615 (2023). https://doi.org/10.1007/s11771-023-5398-1
- 11Irgens, F.: Rheology and Non-Newtonian Fluids, vol. 1. Springer International Publishing, New York (2014). https://doi.org/10.1007/978-3-319-01053-3
10.1007/978-3-319-01053-3 Google Scholar
- 12El-Amrani, M., Obbadi, A., Seaid, M., Yakoubi, D.: Error estimates for a viscosity-splitting scheme in time applied to non-Newtonian fluid flows. Comput. Meth. Appl. Mech. Eng. 419, 116639 (2024). https://doi.org/10.1016/j.cma.2023.116639
- 13Carreau, P.J.: Rheological equations from molecular network theories. Trans. Soc. Rheol. 16(1), 99–127 (1972). https://doi.org/10.1122/1.549276
- 14Animasaun, I.L., Pop, I.: Numerical exploration of a non-Newtonian Carreau fluid flow driven by catalytic surface reactions on an upper horizontal surface of a paraboloid of revolution, buoyancy and stretching at the free stream. Alex. Eng. J. 56(4), 647–658 (2017). https://doi.org/10.1016/j.aej.2017.07.005
- 15Díaz Palencia, J.L., Rahman, S., Khan, M., Yin, G.Z.: Regularity criterion for a two-dimensional Carreau fluid flow. J. Nonlinear Math. Phys. 29(4), 731–749 (2022). https://doi.org/10.1007/s44198-022-00057-6
- 16Ayub, A., Sajid, T., Jamshed, W., Zamora, W.R.M., More, L.A.V., Talledo, L.M.G., Rodríguez Ortega de Peña, N.I., Hussain, S.M., Hafeez, M.B., Krawczuk, M.: Activation energy and inclination magnetic dipole influences on Carreau nanofluid flowing via cylindrical channel with an infinite shearing rate. Appl. Sci. 12(17), 8779 (2022). https://doi.org/10.3390/app12178779
- 17Rooman, M., Shah, Z., Bonyah, E., Jan, M.A., Deebani, W.: Mathematical modeling of Carreau fluid flow and heat transfer characteristics in the renal tubule. J. Math. 1–14, 2517933, (2022). https://doi.org/10.1155/2022/2517933
10.1155/2022/2517933 Google Scholar
- 18Zeb, S., Ahmad, S., Ibrahim, M., Saeed, T.: MHD double-diffusive Carreau fluid flow through a porous medium with variable thermal conductivity and suction/injection. Entropy 24(3), 1–12 (2022). https://doi.org/10.3390/e24030377
- 19Almaneea, A.: Computational investigation on transport of heat energy by flow of dusty Carreau fluid with nanoparticles using finite element method. Ain Shams Eng. J. 15(2), 102377 (2024). https://doi.org/10.1016/j.asej.2023.102377
- 20Santhosh, H.B., Nagendramma, V., Durgaprasad, P., Mamatha, S.U., Raju, C.S.K., Raju, K.V.B.: Dynamics of unsteady Carreau fluid in a suspension of dust and hybrid solid particles with non-Fourier and Fourier fluxes. Int. J. Mod. Phys. B 37(29), 2350251 (2023). https://doi.org/10.1142/S021797922350251X
- 21Jakeer, S., Reddy, S.R.R., Easwaramoorthy, S.V., Basha, H.T., Cho, J.: Exploring the influence of induced magnetic fields and double-diffusive convection on Carreau nanofluid flow through diverse geometries: a comparative study using numerical and ANN approaches. Mathematics 11(17), 3687 (2023). https://doi.org/10.3390/math11173687
- 22Mahdy, A., Hady, F.M., Mohamed, R.A., Abo-zaid, O.A.: Activation energy effectiveness in dusty Carreau fluid flow along a stretched cylinder due to nonuniform thermal conductivity property and temperature-dependent heat source/sink. Heat Transf. 50(6), 5760–5778 (2021). https://doi.org/10.1002/htj.22147
10.1002/htj.22147 Google Scholar
- 23Mahanthesh, B., Animasaun, I.L., Rahimi-Gorji, M., Alarifi, I.M.: Quadratic convective transport of dusty Casson and dusty Carreau fluids past a stretched surface with nonlinear thermal radiation, convective condition and non-uniform heat source/sink. Physica A 535, 122471 (2019). https://doi.org/10.1016/j.physa.2019.122471
- 24Santhosh, H.B., Mahesha, Raju, C.S.K.: Unsteady Carreau-Casson fluids over a radiated shrinking sheet in a suspension of dust and graphene nanoparticles with non-Fourier heat flux. Nonlinear Eng. 8(1), 419–428 (2019). https://doi.org/10.1515/nleng-2017-0158
10.1515/nleng-2017-0158 Google Scholar
- 25Hosseinzadeh, K., Erfani Moghaddam, M.A., Nateghi, S.K., Behshad Shafii, M., Ganji, D.D.: Radiation and convection heat transfer optimization with MHD analysis of a hybrid nanofluid within a wavy porous enclosure. J. Magn. Magn. Mater. 566, 170328 (2023). https://doi.org/10.1016/j.jmmm.2022.170328
- 26Mousa, M.H., Yang, C.M., Nawaz, K., Miljkovic, N.: Review of heat transfer enhancement techniques in two-phase flows for highly efficient and sustainable cooling. Renew. Sustain. Energy Rev. 155, 111896 (2022). https://doi.org/10.1016/j.rser.2021.111896
- 27Ahmed, S.E., Alqarni, M.Z.: Blottner finite difference analysis for non-Darcy flow of variable viscosity power-law nanofluids over a truncated cone with Arrhenius activation energy. Alex. Eng. J. 86, 537–546 (2024). https://doi.org/10.1016/j.aej.2023.11.071
- 28Ur Rehman, K., Shatanawi, W., Çolak, A.B.: Neural networking-based analysis of heat transfer in MHD thermally slip Carreau fluid flow with heat generation. Case Stud. Therm. Eng. 54, 103995 (2024). https://doi.org/10.1016/j.csite.2024.103995
10.1016/j.csite.2024.103995 Google Scholar
- 29Rauf, A., Mushtaq, A., Shah, N.A., Botmart, T.: Heat transfer and hybrid ferrofluid flow over a nonlinearly stretchable rotating disk under the influence of an alternating magnetic field. Sci. Rep. 12(1), 17548 (2022). https://doi.org/10.1038/s41598-022-21784-2
- 30Li, S., Faizan, M., Ali, F., Ramasekhar, G., Muhammad, T., Khalifa, H.A.E.W., Ahmad, Z.: Modelling and analysis of heat transfer in MHD stagnation point flow of Maxwell nanofluid over a porous rotating disk. Alex. Eng. J. 91, 237–248 (2024). https://doi.org/10.1016/j.aej.2024.02.002
- 31Khan, D., Ali, G., Kumam, P., Sitthithakerngkiet, K., Jarad, F.: Heat transfer analysis of unsteady MHD slip flow of ternary hybrid Casson fluid through nonlinear stretching disk embedded in a porous medium. Ain Shams Eng. J. 15(2), 102419 (2024). https://doi.org/10.1016/j.asej.2023.102419
- 32Sreedevi, P., Sudarsana Reddy, P.: Comparative study of convective Oldroyd-B nanofluid and hybrid nanofluid flow, heat and mass transfer analysis over stretching sheet with Cattaneo-Christov heat flux model. J. Nanofluids 13, 839–850 (2024). https://doi.org/10.1166/jon.2024.2168
- 33Sreedevi, P., Reddy, P.S., Chamkha, A.J.: Entropy and heat-transfer analysis of magnetic hybrid nanofluid inside a porous square cavity with thermal radiation. Spec. Top. Rev. Porous Media. An Int. J. 16(2), 59–96. (2025). https://doi.org/10.1615/SpecialTopicsRevPorousMedia.2024048494
- 34Sudarsana Reddy, P., Sreedevi, P.: Enhanced entropy generation and heat transfer characteristics of magnetic nano-encapsulated phase change materials in latent heat thermal energy storage systems. Appl. Math. Mech. 45, 1051–1070 (2024). https://doi.org/10.1007/s10483-024-3126-9
10.1007/s10483-024-3126-9 Google Scholar
- 35Sudarsana Reddy, P., Sreedevi, P., Ghalambaz, M.: Heat transfer investigation of nano—Encapsulated phase change materials (NEPCMs) in a thermal energy storage device. Appl. Therm. Eng. 250, 123495 (2024). https://doi.org/10.1016/j.applthermaleng.2024.123495
- 36Sudarsana Reddy, P., Sreedevi, P.: Unsteady gyrotactic microorganisms and magnetic nanofluid heat and mass transfer analysis inside a chamber with thermal radiation. Int. J. Ambient Energy 45(1), 1–31 (2024). https://doi.org/10.1080/01430750.2023.2277301
10.1080/01430750.2023.2277301 Google Scholar
- 37Sudarsana Reddy, P., Sreedevi, P., Chamkha, A.J.: Thermodiffusion and diffusion–thermo effects on MHD heat and mass transfer of micropolar fluid over a stretching sheet. Int. J. Fluid Mech. Res. 44(3), 241–256 (2017). https://doi.org/10.1615/InterJFluidMechRes.2017019190
10.1615/InterJFluidMechRes.2017019190 Google Scholar
- 38Sultan Akbar, S., Mustafa, M.: Coupled heat and mass transfer to viscoelastic fluid flow in a rotating frame using series and numerical solutions. Int. J. Heat Fluid Flow 106, 109294 (2024). https://doi.org/10.1016/j.ijheatfluidflow.2024.109294
10.1016/j.ijheatfluidflow.2024.109294 Google Scholar
- 39Salahuddin, T., Awais, M.: A comparative study of Cross and Carreau fluid models having variable fluid characteristics. Int. Commun. Heat Mass Transf. 139, 106431 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2022.106431
- 40Sadia, H., Mustafa, M.: Numerical exploration of slip effects on second-grade fluid motion over a porous revolving disk with heat and mass transfer. Heliyon 9(8), e18683 (2023). https://doi.org/10.1016/j.heliyon.2023.e18683
- 41Malik, M.F., Shah, S.A.A., Bilal, M., Hussien, M., Mahmood, I., Akgul, A., Alshomrani, A.S., Az-Zo'bi, E.A.: New insights into the dynamics of heat and mass transfer in a hybrid (Ag-TiO2) nanofluid using modified Buongiorno model: A case of a rotating disk. Results Phys. 53, 106906 (2023). https://doi.org/10.1016/j.rinp.2023.106906
- 42Lin, Y., Cao, L., Tan, Z., Tan, W.: Impact of Dufour and Soret effects on heat and mass transfer of Marangoni flow in the boundary layer over a rotating disk. Int. Commun. Heat Mass Transf. 152, 107287 (2024). https://doi.org/10.1016/j.icheatmasstransfer.2024.107287
- 43Khan, M., Ahmed, J., Rasheed, Z.: Entropy generation analysis for the axisymmetric flow of Carreau nanofluid over a radially stretching disk. Appl. Nanosci. 10, 5291–5303 (2020). https://doi.org/10.1007/s13204-020-01399-7
- 44Bachok, N., Ishak, A., Pop, I.: Flow and heat transfer over a rotating porous disk in a nanofluid. Phys. B Condens. Matter. 406, 1767–1772 (2011). https://doi.org/10.1016/j.physb.2011.02.024
- 45Maleque, K.A., Sattar, M.A.: Steady laminar convective flow with variable properties due to a porous rotating disk. J. Heat Transf. 127, 1406–1409 (2005) https://doi.org/10.1115/1.2098860
- 46Acharya, N., Maity, S., Kundu, P.K.: Framing the hydrothermal features of magnetized TiO2–CoFe2O4 water-based steady hybrid nanofluid flow over a radiative revolving disk. Multidiscip. Model. Mater. Struct. 16, 765–790 (2020). https://doi.org/10.1108/MMMS-08-2019-0151