Enhanced heat transfer rate analysis with Ohmic heating, and multiple slips over exponentially stretching/shrinking plate on MHD hybrid nanofluid: Response surface methodology
Chandralekha Mahanta
Department of Basic & Applied Science, National Institute of Technology, Arunachal Pradesh, Jote, Arunachal Pradesh, India
Search for more papers by this authorCorresponding Author
Ram Prakash Sharma
Department of Mechanical Engineering, National Institute of Technology Arunachal Pradesh, Jote, Arunachal Pradesh, India
Correspondence
Ram Prakash Sharma, Department of Mechanical Engineering, National Institute of Technology Arunachal Pradesh, Jote, Papum Pare District, Arunachal Pradesh-791113, India.
Email: [email protected]
Search for more papers by this authorChandralekha Mahanta
Department of Basic & Applied Science, National Institute of Technology, Arunachal Pradesh, Jote, Arunachal Pradesh, India
Search for more papers by this authorCorresponding Author
Ram Prakash Sharma
Department of Mechanical Engineering, National Institute of Technology Arunachal Pradesh, Jote, Arunachal Pradesh, India
Correspondence
Ram Prakash Sharma, Department of Mechanical Engineering, National Institute of Technology Arunachal Pradesh, Jote, Papum Pare District, Arunachal Pradesh-791113, India.
Email: [email protected]
Search for more papers by this authorAbstract
The proposed investigation leads toward the discussion on the dissipative heat on the conducting flow of hybrid nanofluid over an exponentially expanding/contracting plate. The sheet is considered to be permeable therefore, the impact of suction/injection is vital throughout the discussion. The model of hybrid nanofluid is adopted with various thermophysical parameters likely the conductivity and the viscosity properties. By employing valid similarity transformations, the governing set of equations with boundary conditions is converted to the set of non-linear ODEs. The reduced system of equations is explicated using the bvp4c solver in MATLAB. The numerical outcomes are deliberated and graphically presented in momentum and temperature profiles. The enhancement of the nanofluid heat transfer rate is achieved through the utilization of Response Surface Methodology (RSM). Further, the stability analysis is presented to validate the convergence of the set of time-dependent profiles for the various contributing constraints. From RSM, the combination of a high level of , high level of are conducive to good heat transfer. Also, high level of and low level of slip parameter value (), high level of and low level emerges as the most conducive operating condition that would maximize the rate of transportation of heat.
REFERENCES
- 1Choi, U.S., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publication-fed. 99–106 (1995). https://www.osti.gov/biblio/196525
- 2Keblinski, P., Phillpot, S.R., Choi, U.S., Eastman, J.A.: Mechanism of heat flow in suspensions of nano-sized particles. Int. J. Heat Mass Transf. 45, 855–863 (2002)
- 3Arjmandfard, A., Toghraie, D., Mehmandoust, B., Hashemian, M., Karimipour, A.: Study the time evolution of nanofluid flow in a microchannel with various sizes of Fe nanoparticle using molecular dynamics simulation. Int. Commun. Heat Mass Transf. 118, 104874 (2020)
- 4Zhao, N., Yang, J., Li, H., Zhang, Z., Li, S.: Numerical investigations of laminar heat transfer and flow performance of Al2O3–water nanofluids in a flat tube. Int. J. Heat Mass Transf. 92, 268–282 (2016)
- 5Kanti, P., Sharma, K.V., Ramachandra, C.G., Gupta, M.: Thermal performance of fly ash nanofluids at various inlet fluid temperatures: An experimental study. Int. Commun. Heat Mass Transf. 119, 104926 (2020)
- 6Zufar, M., Gunnasegaran, P., Kumar, H.M., Ng, K.C.: Numerical and experimental investigations of hybrid nanofluids on pulsating heat pipe performance. Int. J. Heat Mass Transf. 146, 118887 (2020)
- 7Cimpean, D.S., Sheremet, M.A., Pop, I.: Mixed convection of hybrid nanofluid in a porous trapezoidal chamber. Int. Commun. Heat Mass Transf. 116, 104627 (2020)
- 8Waini, I., Ishak, A., Groşan, T., Pop, I.: Mixed convection of a hybrid nanofluid flow along a vertical surface embedded in a porous medium. Int. Commun. Heat Mass Transf. 114, 104565 (2020)
- 9Asadikia, A., Mirjalily, S.A.A., Nasirizadeh, N., Kargarsharifabad, H.: Characterization of thermal and electrical properties of hybrid nanofluids prepared with multi-walled carbon nanotubes and Fe2O3 nanoparticles. Int. Commun. Heat Mass Transf. 117, 104603 (2020)
- 10Muhammad, K., Hayat, T., Alsaedi, A.: Numerical study for melting heat in dissipative flow of hybrid nanofluid over a variable thicked surface. Int. Commun. Heat Mass Transf. 121, 104805 (2021)
- 11Ratha, P.K., Tripathy, R.S., Mishra, S.R.: Differential transformation and adomian decomposition methods for the radiation effect on marangoni boundary layer flow of carbon nanotubes. In: Mathematical Methods in Dynamical Systems, pp. 185–202. CRC Press, Boca Raton (2023)
10.1201/9781003328032-6 Google Scholar
- 12Ratha, P.K., Tripathy, R.S., Mishra, S.R.: Role of particle shape considering three-dimensional flow of water-based ternary hybrid nanofluids for the interaction of magnetic field. Mod. Phys. Lett. B. 37(36), 2350172 (2023)
- 13Pattnaik, P.K., Baithalu, R., Mishra, S.R., Panda, S.: Effective thermal properties under the influence of various shapes of the nanoparticles on the flow of ternary hybrid nanofluid over an infinite vertical plate. Pramana. 98(3), 104 (2024)
- 14Baithalu, R., Panda, S., Pattnaik, P.K., Mishra, S.R.: Blood-based CNT nanofluid flow over rotating discs for the impact of drag using Darcy–Forchheimer model embedding in porous matrix. Int. J. Appl. Comput. Math. 10(3), 1–20 (2024)
10.1007/s40819-024-01733-5 Google Scholar
- 15Baithalu, R., Mishra, S.R., Panda, S.: Magnetic dissipation on radiative free convection of a conducting hybrid nanofluid within a rotating cone and circular disc. Partial Differ. Equ. Appl. Math. 11, 100788 (2024)
10.1016/j.padiff.2024.100788 Google Scholar
- 16Mishra, S.R., Agbaje, T.M., Baithalu, R., Panda, S.: Spectral quasi-linearization approach for the swimming of motile microorganisms on the bio-convection Casson nanofluid flow over a rotating circular disk. Numer. Heat Tr. Part B: Fund. 1–27 (2024). https://doi.org/10.1080/10407790.2024.2352857
- 17Panda, S., Baithalu, R., Pattnaik, P.K., Mishra, S.R.: Illustration of slip velocity on the radiative hybrid nanofluid flow over an elongating/contracting surface with dissipative heat effects. J. Therm. Anal. Calorim. 149, 8463–8474 (2024)
- 18Agbaje, M.T., Baithalu, R., Mishra, S.R., Panda, S.: Irreversibility processes on the squeezing flow analysis of blood-based micropolar hybrid nanofluid through parallel channel: Spectral quasilinearisation method. BioNanoScience. 14, 3226–3240 (2024)
- 19Baithalu, R., Agbaje, T.M., Mishra, S.R., Panda, S.: Diversified characteristic of carbon nanotube nanoparticles on the entropy minimization for the flow of hybrid nanofluid through a convectively heated surface. ZAMM-Z. Angew. Math. Mech. 104(9), e202400259 (2024)
- 20Shamshuddin, M.D., Panda, S., Saeed, A., Ratha, P.K., Mishra, S.R.: Homotopy analysis on magnetized Williamson-micropolar nanofluid flow over a bi-directionally extending surface with multiple slip conditions. Numer. Heat Tr. Part B: Fund. 1–21 (2024). https://doi.org/10.1080/10407790.2024.2364783
- 21Tripathy, R.S., Ratha, P.K., Mishra, S.R.: On the Darcy–Forchheimer flow of carbon nanotubes nanofluid across a stretching surface for the impact of heat source/sink and Ohmic heating. Mod. Phys. Lett. B. 38(30), 2450296 (2024). https://doi.org/10.1142/S0217984924502968
- 22Fatunmbi, E.O., Ogunseye, H.A., Sibanda, P.: Magnetohydrodynamic micropolar fluid flow in a porous medium with multiple slip conditions. J. Therm. Anal. Calorim. 115, 104577 (2020)
- 23Uddin, M.J., Kabir, M.N., Bég, O.A.: Computational investigation of Stefan blowing and multiple-slip effects on buoyancy-driven bioconvection nanofluid flow with microorganisms. Int. J. Heat Mass Transf. 95, 116–130 (2016)
- 24Acharya, N., Mabood, F., Shahzad, S.A., Badruddin, I.A.: Hydrothermal variations of radiative nanofluid flow by the influence of nanoparticles diameter and nanolayer. Int. Commun. Heat Mass Transf. 130, 105781 (2020)
10.1016/j.icheatmasstransfer.2021.105781 Google Scholar
- 25Khan, W.A., Pop, I.: Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53, 2477–2483(2016)
10.1016/j.ijheatmasstransfer.2010.01.032 Google Scholar
- 26Raza, J., Farooq, M., Mebarek-Oudina, F., Mahanthesh, B.: Multiple slip effects on MHD non-Newtonian nanofluid flow over a nonlinear permeable elongated sheet numerical and statistical analysis. Multidiscip. Model. Mater. Struct. 15, 913–931 (2019)
- 27Mabood, F., Shateyi, S.: Multiple slip effects on MHD unsteady flow heat and mass transfer impinging on permeable stretching sheet with radiation. Model. Simul. Eng. 2019(1), 3052790 (2019)
10.1155/2019/3052790 Google Scholar
- 28Sharma, R.P., Mahanta, C., Mishra, S.R.: A study under the impact of Soret and Dufour effects on MHD stagnation point flow and heat transfer towards a stretching sheet. Int. J. Mod. Phys. B. 38(19), 2450245 (2024)
- 29Mahanta, C., Sharma, R.P.: A comparative study of a hybrid nanofluid on a melting stretching surface using different nanoparticle shapes. J. Therm. Anal. Calorim. 148(23), 13655–13677 (2023)
- 30Haq, R.U., Sajjad, T., Ullah, M.Z., Alshomrani, A.S., Tlili, I. Dual nature solutions of water-based carbon nanotubes along a shrinking surface in the presence of thermal radiation and viscous dissipation. Int. Commun. Heat Mass Transf. 119, 104938 (2020)
- 31Kumar, R.N., Jyothi, A.M., Alhumade, H., Gowda, R.J.P., Alam, M.M., Ahmad, I., Gorji, M.R., Prasannakumara, B.C.: Impact of magnetic dipole on thermophoretic particle deposition in the flow of Maxwell fluid over a stretching sheet. J. Mole. Liq. 334, 116494 (2021)
- 32Bhatti, M.M., Yousif, M.A., Mishra, S.R., Sahid, A.: Simultaneous influence of thermo-diffusion and diffusion-thermo on non-Newtonian hyperbolic tangent magnetized nanofluid with Hall current through a nonlinear stretching surface. Pramana, 93(6), 88 (2019)
- 33Kikuchi, H., Urakawa, Y., Tanii, M.: Changes in properties of thin-film magnetoimpedance element by Joule heating. J. Magn. Magn. Mater. 539, 168356 (2021)
- 34Khan, A., Shah, Z., Alzahrani, E., Islam, S.: Entropy generation and thermal analysis for rotary motion of hydromagnetic Casson nanofluid past a rotating cylinder with Joule heating effect. Int. Commun. Heat Mass Transf. 119, 104979 (2020)
- 35Oni, M.O., Jha, B.K.: Joule heating and viscous dissipation effect on electroosmotic mixed convection flow in a vertical microchannel subjected to asymmetric heat fluxes. Propuls. Power Res. 10, 83–94 (2021)
- 36Mittal, A.S., Patel, H.R., Darji, R.R.: Mixed convection micropolar ferrofluid flow with viscous dissipation, Joule heating, and convective boundary conditions. Int. Commun. Heat Mass Transf. 108, 104320 (2019)
- 37Hayat, T., Shah, F., Alsaedi, A., Ahmad, B.: Entropy-optimized dissipative flow of effective Prandtl number with melting heat transport and Joule heating. Int. Commun. Heat Mass Transf. 111, 104454 (2020)
- 38Khashi'ie, N.S., Waini, I., Mukhtar, M.F., Zainal, N.A., Hamzah, K.B., Arifin, N.M., et al.: Response surface methodology (RSM) on the hybrid nanofluid flow subject to a vertical and permeable wedge. Nanomaterials 12(22), 4016 (2022)
- 39Khashi'ie, N.S., Waini, I., Hamzah, K.B., Mukhtar, M.F., Kasim, A.R.M., et al.: Numerical solution and statistical analysis of the unsteady hybrid ferrofluid flow with heat generation subject to a rotating disk. ZAMM-Z. Angew. Math. Mech. 103(6), e202200384 (2023)
- 40Baithalu, R., Mishra, S.R.: Enhanced heat transfer rate analysis with inertial drag effect in a micropolar nanofluid flow within a channel: Response surface methodology. J. Therm. Anal. Calorim. 148(21), 12159–12173 (2023)
- 41Baithalu, R., Mishra, S.R., Shah, N.A.: Sensitivity analysis of various factors on the micropolar hybrid nanofluid flow with optimized heat transfer rate using response surface methodology: A statistical approach. Phys. Fluids. 35(10), 102016 (2023)
- 42Baithalu, R., Mishra, S.R.: On optimizing shear rate analysis for the water-based CNT micropolar nanofluids via an elongating surface: response surface methodology combined with ANOVA test. J. Therm. Anal. Calorim. 148(24), 14275–14294 (2023)
- 43Baithalu, R., Mishra, S.R.: Response surface methodology in optimizing heat transfer rate for homogeneous–heterogeneous reactions with thermal radiation effect on the micropolar nanofluid. Numer. Heat Transf. A: Appl. 1–20 (2023). https://doi.org/10.1080/10407782.2023.2282152
- 44Baithalu, R., Mishra, S.R.: On the free convection of magneto-micropolar fluid in association with thermal radiation and chemical reaction and optimized heat transfer rate using response surface methodology. Mod. Phys. Lett. B, 37(33), 2350171 (2023)
- 45Panda, S., Baag, A.P., Pattnaik, P.K., Baithalu, R., Mishra, S.R.: Artificial neural network approach to simulate the impact of concentration in optimizing heat transfer rate on water-based hybrid nanofluid under slip conditions: A regression analysis. Numer. Heat Transf. B: Fund. 1–23 (2024). https://doi.org/10.1080/10407790.2024.2333944
- 46Pattnaik, P.K., Mishra, S.R., Baithalu, R., Panda, S.: Sensitivity analysis and enhanced EMHD performance of unsteady ferrite-water hybrid nanofluid on a Riga plate with variable magnetization and heat generation. Numer. Heat Transf. A: Appl. 1–23 (2024). https://doi.org/10.1080/10407782.2024.2363503
- 47Mishra, S.R., Panda, S., Baithalu, R.: Enhanced heat transfer rate on the flow of hybrid nanofluid through a rotating vertical cone: a statistical analysis. Partial Differ. Equ. Appl. Math. 11, 100825 (2024)
10.1016/j.padiff.2024.100825 Google Scholar
- 48Shao, W., Baithalu, R., Mishra, S.R., Dogonchi, A.S., Ali, R., Chamkha, A.J., et al.: Statistical approach on optimizing heat transfer rate for Au/Fe3O4-blood nanofluid flow with entropy analysis used in drug delivery system. Case Stud. Therm. Eng. 54, 104008 (2024)
- 49Baithalu, R., Mishra, S.R., Pattnaik, P.K., Panda, S.: Optimizing shear and couple stress analysis for the magneto-micropolar dissipative nanofluid flow toward an elongating surface: a comprehensive RSM-ANOVA investigation. J. Therm. Anal. Calorim. 149(4), 1697–1713 (2024)
- 50Khashi'ie, N.S., Mukhtar, M.F., Zainal, N.A., Hamzah, K., Waini, I., et al.: Sensitivity analysis of MHD hybrid nanofluid flow over a radially shrinking disk with heat generation. J. Adv. Res. Fluid Mech. Therm. Sci. 117(2) 116–130 (2024)
10.37934/arfmts.117.2.116130 Google Scholar
- 51Khashi'Ie, N.S., Hamzah, K.B., Waini, I., Zainal, N.A., Nordin, S.K.S., Kasim, A.R.M.: Response surface methodology of the unsteady axisymmetric magnetic hybrid nanofluid flow subject to a shrinking disk. J. Adv. Res. Appl. Mech. 112(1), 137–148 (2024)
10.37934/aram.112.1.137148 Google Scholar
- 52Box, G.E., Wilson, K.B.: On the experimental attainment of optimum conditions. J. R. Stat. Soc., Ser. B, Methodol. 13(1), 1–38 (1951)
- 53Mackolil, J., Mahanthesh, B.: Heat transfer enhancement using temperature-dependent effective properties of alumina-water nanoliquid with thermo-solutal Marangoni convection: a sensitivity analysis. Appl. Nanosci. 13, 255–266 (2023)
- 54Waini, I., Ishak, A., Pop, I.: Hybrid nanofluid flow towards a stagnation point on an exponentially stretching/shrinking vertical sheet with buoyancy effects. Int. J. Numer. Methods Heat Fluid Flow 31(1), 216–235 (2021). https://doi.org/10.1108/HFF-02-2020-0086
- 55Bachok, N., Ishak, A., Pop, I.: Boundary layer stagnation-point flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid. Int. J. Heat Mass Transf. 55, 8122–8128 (2012)
- 56Zainal, N.A., Nazar, R., Naganthran, K., Pop, I.: Viscous dissipation and MHD hybrid nanofluid flow towards an exponentially stretching/shrinking surface. Neural. Comput. Appl. 33, 11285–11295 (2021)