Promotion of dermal regeneration using pullulan/gelatin porous skin substitute
Nan Cheng
Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
Search for more papers by this authorCorresponding Author
Marc G. Jeschke
Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
Institute of Medical Science, University of Toronto, Toronto, ON, Canada
Department of Surgery, University of Toronto, Toronto, ON, Canada
Department of Immunology, University of Toronto, Toronto, ON, Canada
Ross-Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
Correspondence
Saeid Amini Nik, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada.
Email: [email protected]
Marc G Jeschke, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada.
Email: [email protected]
Search for more papers by this authorMohammadali Sheikholeslam
Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
Search for more papers by this authorAndrea-Kaye Datu
Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
Search for more papers by this authorHwan Hee Oh
Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
Search for more papers by this authorCorresponding Author
Saeid Amini-Nik
Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
Department of Surgery, University of Toronto, Toronto, ON, Canada
Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
Correspondence
Saeid Amini Nik, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada.
Email: [email protected]
Marc G Jeschke, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada.
Email: [email protected]
Search for more papers by this authorNan Cheng
Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
Search for more papers by this authorCorresponding Author
Marc G. Jeschke
Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
Institute of Medical Science, University of Toronto, Toronto, ON, Canada
Department of Surgery, University of Toronto, Toronto, ON, Canada
Department of Immunology, University of Toronto, Toronto, ON, Canada
Ross-Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
Correspondence
Saeid Amini Nik, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada.
Email: [email protected]
Marc G Jeschke, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada.
Email: [email protected]
Search for more papers by this authorMohammadali Sheikholeslam
Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
Search for more papers by this authorAndrea-Kaye Datu
Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
Search for more papers by this authorHwan Hee Oh
Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
Search for more papers by this authorCorresponding Author
Saeid Amini-Nik
Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
Department of Surgery, University of Toronto, Toronto, ON, Canada
Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
Correspondence
Saeid Amini Nik, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada.
Email: [email protected]
Marc G Jeschke, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada.
Email: [email protected]
Search for more papers by this authorAbstract
Tissue-engineered dermal substitutes represent a promising approach to improve wound healing and provide more sufficient regeneration, compared with current clinical standards on care of large wounds, early excision, and grafting of autografts. However, inadequate regenerative capacity, impaired regeneration/degradation profile, and high cost of current commercial tissue-engineered dermal regeneration templates hinder their utilization, and the development of an efficient and cost-effective tissue-engineered dermal substitute remains a challenge. Inspired from our previously reported data on a pullulan/gelatin scaffold, here we present a new generation of a porous pullulan/gelatin scaffold (PG2) served as a dermal substitute with enhanced chemical and structural characteristics. PG2 shows excellent biocompatibility (viability, migration, and proliferation), assessed by in vitro incorporation of human dermal fibroblasts in comparison with the Integra® dermal regeneration template (Control). When applied on a mouse full-thickness excisional wound, PG2 shows rapid scaffold degradation, more granulation tissue, more collagen deposition, and more cellularity in comparison with Control at 20 days post surgery. The faster degradation is likely due to the enhanced recruitment of inflammatory macrophages to the scaffold from the wound bed, and that leads to earlier maturation of granulation tissue with less myofibroblastic cells. Collectively, our data reveal PG2's characteristics as an applicable dermal substitute with excellent dermal regeneration, which may attenuate scar formation.
CONFLICT OF INTEREST
The authors have declared that there is no conflict of interest.
Supporting Information
Filename | Description |
---|---|
term2946-sup-0001-Figure_S1.tifTIFF image, 2.9 MB |
Figure S1. Supporting information |
term2946-sup-0002-Figure_S2.tifTIFF image, 9.1 MB |
Figure S2. Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Abdullahi, A., Amini-Nik, S., & Jeschke, M. G. (2014). Animal models in burn research. Cellular and Molecular Life Sciences: CMLS, 71(17), 3241–3255. https://doi.org/10.1007/s00018-014-1612-5
- Aljghami, M. E., Jeschke, M. G., & Amini-Nik, S. (2019). Examining the contribution of surrounding intact skin during cutaneous healing. J Anat, 234(4), 523–531. https://doi.org/10.1111/joa.12941
- Aljghami, M. E., Saboor, S., & Amini-Nik, S. (2019). Emerging innovative wound dressings. Ann Biomed Eng, 47(3), 659–675. https://doi.org/10.1007/s10439-018-02186-w
- Amini-Nik, S. (2018). Time Heals all Wounds- but Scars Remain. Can Personalized Medicine Help? Frontiers in genetics, 9, 211–211. https://doi.org/10.3389/fgene.2018.00211
- Amini-Nik, S., Cambridge, E., Yu, W., Guo, A., Whetstone, H., Nadesan, P., … Alman, B. A. (2014). β-Catenin-regulated myeloid cell adhesion and migration determine wound healing. The Journal of Clinical Investigation, 124(6), 2599–2610. https://doi.org/10.1172/JCI62059
- Amini-Nik, S., Glancy, D., Boimer, C., Whetstone, H., Keller, C., & Alman, B. A. (2011). Pax7 expressing cells contribute to dermal wound repair, regulating scar size through a β-catenin mediated process. STEM CELLS, 29(9), 1371–1379. https://doi.org/10.1002/stem.688
- Amini-Nik, S., Yousuf, Y., & Jeschke, M. G. (2018). Scar management in burn injuries using drug delivery and molecular signaling: Current treatments and future directions. Advanced Drug Delivery Reviews, 123, 135–154. https://doi.org/10.1016/j.addr.2017.07.017
- Annabi, N., Nichol, J. W., Zhong, X., Ji, C., Koshy, S., Khademhosseini, A., & Dehghani, F. (2010). Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Engineering Part B: Reviews, 16(4), 371–383. https://doi.org/10.1089/ten.teb.2009.0639
- Arno, A. I., Amini-Nik, S., Blit, P. H., Al-Shehab, M., Belo, C., Herer, E., … Jeschke, M. G. (2014a). Human Wharton's jelly mesenchymal stem cells promote skin wound healing through paracrine signaling. Stem Cell Research & Therapy, 5(1), 28. https://doi.org/10.1186/scrt417
- Arno, A. I., Amini-Nik, S., Blit, P. H., Al-Shehab, M., Belo, C., Herer, E., & Jeschke, M. G. (2014b). Effect of human Wharton's jelly mesenchymal stem cell paracrine signaling on keloid fibroblasts. Stem cells translational medicine, 3(3), 299–307. https://doi.org/10.5966/sctm.2013-0120
- Bakhtyar, N., Jeschke, M. G., Mainville, L., Herer, E., & Amini-Nik, S. (2017). Acellular gelatinous material of human umbilical cord enhances wound healing: A candidate remedy for deficient wound healing. Frontiers in physiology, 8, 200–200. https://doi.org/10.3389/fphys.2017.00200
- Barnes, C. P. IV, Pemble, C. W., Brand, D. D., Simpson, D. G., & Bowlin, G. L. (2007). Cross-linking electrospun type ii collagen tissue engineering scaffolds with carbodiimide in ethanol. Tissue Engineering, 13(7), 1593–1605. https://doi.org/10.1089/ten.2006.0292
- Bielefeld, K. A., Amini-Nik, S., & Alman, B. A. (2013). Cutaneous wound healing: Recruiting developmental pathways for regeneration. Cellular and Molecular Life Sciences, 70(12), 2059–2081. https://doi.org/10.1007/s00018-012-1152-9
- Branski, L. K., Herndon, D. N., Pereira, C., Mlcak, R. P., Celis, M. M., Lee, J. O., … Jeschke, M. G. (2007). Longitudinal assessment of Integra in primary burn management: A randomized pediatric clinical trial. Critical care medicine, 35(11), 2615–2623. https://doi.org/10.1097/01.CCM.0000285991.36698.E2
- Chvapil, M. (1982). Considerations on manufacturing principles of a synthetic burn dressing: A review. Journal of Biomedical Materials Research Part A, 16(3), 245–263. https://doi.org/10.1002/jbm.820160306
- Desmoulière, A., Chaponnier, C., & Gabbiani, G. (2005). Tissue repair, contraction, and the myofibroblast. Wound repair and regeneration, 13(1), 7–12. https://doi.org/10.1111/j.1067-1927.2005.130102.x
- Hu, M. S., Walmsley, G. G., Barnes, L. A., Weiskopf, K., Rennert, R. C., Duscher, D., … Longaker, M. T. (2017). Delivery of monocyte lineage cells in a biomimetic scaffold enhances tissue repair. JCI insight, 2(19), e96260. https://doi.org/10.1172/jci.insight.96260
- Jeschke, M. G., Patsouris, D., Stanojcic, M., Abdullahi, A., Rehou, S., Pinto, R., … Amini-Nik, S. (2015). Pathophysiologic response to burns in the elderly. EBioMedicine, 2(10), 1536–1548. https://doi.org/10.1016/j.ebiom.2015.07.040
- Jeschke, M. G., Pinto, R., Costford, S. R., & Amini-Nik, S. (2016). Threshold age and burn size associated with poor outcomes in the elderly after burn injury. Burns, 42(2), 276–281. https://doi.org/10.1016/j.burns.2015.12.008
- Jeschke, M. G., Sadri, A. R., Belo, C., & Amini-Nik, S. (2017b). A surgical device to study the efficacy of bioengineered skin substitutes in mice wound healing models. Tissue Eng Part C Methods, 23(4), 237–242. https://doi.org/10.1089/ten.tec.2016.0545
- Jeschke, M. G., Sadri, A.-R., Belo, C., & Amini-Nik, S. (2017a). A surgical device to study the efficacy of bioengineered skin substitutes in mice wound healing models. Tissue Engineering Part C: Methods, 23(4), 237–242. https://doi.org/10.1089/ten.tec.2016.0545
- Lack, S., Dulong, V., Picton, L., Cerf, D. L., & Condamine, E. (2007). High-resolution nuclear magnetic resonance spectroscopy studies of polysaccharides crosslinked by sodium trimetaphosphate: A proposal for the reaction mechanism. Carbohydrate Research, 342(7), 943–953. https://doi.org/10.1016/j.carres.2007.01.011
- Leathers, T. D. (2003). Biotechnological production and applications of pullulan. Applied Microbiology and Biotechnology, 62(5), 468–473. https://doi.org/10.1007/s00253-003-1386-4
- Lee, S. B., Kim, Y. H., Chong, M. S., Hong, S. H., & Lee, Y. M. (2005). Study of gelatin-containing artificial skin V: Fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials, 26(14), 1961–1968. https://doi.org/10.1016/j.biomaterials.2004.06.032
- Li, J., Zhang, Y. P., & Kirsner, R. S. (2003). Angiogenesis in wound repair: Angiogenic growth factors and the extracellular matrix. Microscopy research and technique, 60(1), 107–114. https://doi.org/10.1002/jemt.10249
- Li, X., Xue, W., Liu, Y., Fan, D., Zhu, C., & Ma, X. (2015). Novel multifunctional PB and PBH hydrogels as soft filler for tissue engineering. Journal of Materials Chemistry B, 3(23), 4742–4755. https://doi.org/10.1039/C5TB00408J
- Loh, Q. L., & Choong, C. (2013). Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Engineering Part B: Reviews, 19(6), 485–502. https://doi.org/10.1089/ten.teb.2012.0437
- Lu, L., Peter, S. J., Lyman, M. D., Lai, H.-L., Leite, S. M., Tamada, J. A., … Mikos, A. G. (2000). In vitro degradation of porous poly(l-lactic acid) foams. Biomaterials, 21(15), 1595–1605. https://doi.org/10.1016/S0142-9612(00)00048-X
- Ma, J., Wang, H., He, B., & Chen, J. (2001). A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials, 22(4), 331–336. https://doi.org/10.1016/S0142-9612(00)00188-5
- Ma, L., Gao, C., Mao, Z., Zhou, J., & Shen, J. (2004). Enhanced biological stability of collagen porous scaffolds by using amino acids as novel cross-linking bridges. Biomaterials, 25(15), 2997–3004. https://doi.org/10.1016/j.biomaterials.2003.09.092
- Mak, K., Manji, A., Gallant-Behm, C., Wiebe, C., Hart, D. A., Larjava, H., & Häkkinen, L. (2009). Scarless healing of oral mucosa is characterized by faster resolution of inflammation and control of myofibroblast action compared to skin wounds in the red Duroc pig model. Journal of Dermatological Science, 56(3), 168–180. https://doi.org/10.1016/j.jdermsci.2009.09.005
- Mano, J. F., Silva, G. A., Azevedo, H. S., Malafaya, P. B., Sousa, R. A., Silva, S. S., … Reis, R. L. (2007). Natural origin biodegradable systems in tissue engineering and regenerative medicine: Present status and some moving trends. Journal of The Royal Society Interface, 4(17), 999–1030. https://doi.org/10.1098/rsif.2007.0220
- Mocanu, G., Mihai, D., LeCerf, D., Picton, L., & Muller, G. (2004). Synthesis of new associative gel microspheres from carboxymethyl pullulan and their interactions with lysozyme. European Polymer Journal, 40(2), 283–289. https://doi.org/10.1016/j.eurpolymj.2003.09.019
- Moiemen, N., Yarrow, J., Hodgson, E., Constantinides, J., Chipp, E., Oakley, H., … Freeth, M. (2011). Long-term clinical and histological analysis of Integra dermal regeneration template. Plastic and Reconstructive Surgery, 127(3), 1149–1154. https://doi.org/10.1097/PRS.0b013e31820436e3
- Moiemen, N. S., Staiano, J. J., Ojeh, N. O., Thway, Y., & Frame, J. D. (2001). Reconstructive surgery with a dermal regeneration template: Clinical and histologic study. Plastic and reconstructive surgery, 108(1), 93–103. https://doi.org/10.1097/00006534-200107000-00015
- Moulin, V., Auger, F. A., Garrel, D., & Germain, L. (2000). Role of wound healing myofibroblasts on re-epithelialization of human skin. Burns, 26(1), 3–12. https://doi.org/10.1016/S0305-4179(99)00091-1
- Nicholas, M. N., Jeschke, M. G., & Amini-Nik, S. (2016a). Cellularized bilayer pullulan–gelatin hydrogel for skin regeneration. Tissue Engineering Part A, 22(9-10), 754–764. https://doi.org/10.1089/ten.tea.2015.0536
- Nicholas, M. N., Jeschke, M. G., & Amini-Nik, S. (2016b). Methodologies in creating skin substitutes. Cellular and Molecular Life Sciences: CMLS, 73(18), 3453–3472. https://doi.org/10.1007/s00018-016-2252-8
- Pan, Z., Ghosh, K., Hung, V., Macri, L. K., Einhorn, J., Bhatnagar, D., … Rafailovich, M. H. (2013). Deformation gradients imprint the direction and speed of en masse fibroblast migration for fast healing. Journal of Investigative Dermatology, 133(10), 2471–2479. https://doi.org/10.1038/jid.2013.184
- Powell, H. M., & Boyce, S. T. (2006). EDC cross-linking improves skin substitute strength and stability. Biomaterials, 27(34), 5821–5827. https://doi.org/10.1016/j.biomaterials.2006.07.030
- Rnjak, J., Wise, S. G., Mithieux, S. M., & Weiss, A. S. (2010). Severe burn injuries and the role of elastin in the design of dermal substitutes. Tissue Engineering Part B: Reviews, 17(2), 81–91. https://doi.org/10.1089/ten.teb.2010.0452
- Rustad, K. C., Wong, V. W., Sorkin, M., Glotzbach, J. P., Major, M. R., Rajadas, J., … Gurtner, G. C. (2012). Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials, 33(1), 80–90. https://doi.org/10.1016/j.biomaterials.2011.09.041
- Sadiq, A., Shah, A., Jeschke, G. M., Belo, C., Qasim Hayat, M., Murad, S., & Amini-Nik, S. (2018). The role of serotonin during skin healing in post-thermal injury. International Journal of Molecular Sciences, 19(4). https://doi.org/10.3390/ijms19041034
10.3390/ijms19041034 Google Scholar
- Sheikholeslam, M., Wright, M. E. E., Jeschke, M. G., & Amini-Nik, S. (2017). Biomaterials for skin substitutes. Advanced Healthcare Materials, 7(5), 1700897. https://doi.org/10.1002/adhm.201700897
- Soller, E. C., Tzeranis, D. S., Miu, K., So, P. T. C., & Yannas, I. V. (2012). Common features of optimal collagen scaffolds that disrupt wound contraction and enhance regeneration both in peripheral nerves and in skin. Biomaterials, 33(19), 4783–4791. https://doi.org/10.1016/j.biomaterials.2012.03.068
- Sous, M., Bareille, R., Rouais, F., Clement, D., Amedee, J., Dupuy, B., & Baquey, C. (1998). Cellular biocompatibility and resistance to compression of macroporous β-tricalcium phosphate ceramics. Biomaterials, 19(23), 2147–2153. https://doi.org/10.1016/S0142-9612(98)00118-5
- Sun, B. K., Siprashvili, Z., & Khavari, P. A. (2014). Advances in skin grafting and treatment of cutaneous wounds. Science, 346(6212), 941–945. https://doi.org/10.1126/science.1253836
- Sun, G., Zhang, X., Shen, Y.-I., Sebastian, R., Dickinson, L. E., Fox-Talbot, K., … Gerecht, S. (2011). Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proceedings of the National Academy of Sciences, 108(52), 20976–20981. https://doi.org/10.1073/pnas.1115973108
- Wang, H.-M., Chou, Y.-T., Wen, Z.-H., Wang, Z.-R., Chen, C.-H., & Ho, M.-L. (2013). novel biodegradable porous scaffold applied to skin regeneration. PLOS ONE, 8(6), e56330. https://doi.org/10.1371/journal.pone.0056330
- Wang, T.-W., Sun, J.-S., Wu, H.-C., Tsuang, Y.-H., Wang, W.-H., & Lin, F.-H. (2006). The effect of gelatin–chondroitin sulfate–hyaluronic acid skin substitute on wound healing in SCID mice. Biomaterials, 27(33), 5689–5697. https://doi.org/10.1016/j.biomaterials.2006.07.024
- Wei, G., & Ma, P. X. (2004). Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials, 25(19), 4749–4757. https://doi.org/10.1016/j.biomaterials.2003.12.005
- Wong, V. W., Rustad, K. C., Glotzbach, J. P., Sorkin, M., Inayathullah, M., Major, M. R., … Gurtner, G. C. (2011). Pullulan hydrogels improve mesenchymal stem cell delivery into high-oxidative-stress wounds. Macromolecular bioscience, 11(11), 1458–1466. https://doi.org/10.1002/mabi.201100180
- Xiong, S., Zhang, X., Lu, P., Wu, Y., Wang, Q., Sun, H., … Ouyang, H. (2017). A gelatin-sulfonated silk composite scaffold based on 3D printing technology enhances skin regeneration by stimulating epidermal growth and dermal neovascularization. Scientific Reports, 7(1), 4288. https://doi.org/10.1038/s41598-017-04149-y
- Yannas, I., Lee, E., Orgill, D. P., Skrabut, E., & Murphy, G. F. (1989). Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proceedings of the National Academy of Sciences, 86(3), 933–937. https://doi.org/10.1073/pnas.86.3.933
- Zhao, X., Lang, Q., Yildirimer, L., Lin, Z. Y., Cui, W., Annabi, N., … Khademhosseini, A. (2016). Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Advanced Healthcare Materials, 5(1), 108–118. https://doi.org/10.1002/adhm.201500005
- Zhao, X., Sun, X., Yildirimer, L., Lang, Q., Lin, Z. Y., Zheng, R., … Khademhosseini, A. (2017). Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomaterialia, 49, 66–77. https://doi.org/10.1016/j.actbio.2016.11.017