The advances in nerve tissue engineering: From fabrication of nerve conduit to in vivo nerve regeneration assays
Maliheh Jahromi
Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
Search for more papers by this authorCorresponding Author
Shahnaz Razavi
Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
Correspondence
Shahnaz Razavi, Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744-176, Iran.
Email: [email protected]
Search for more papers by this authorAbbas Bakhtiari
Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
Search for more papers by this authorMaliheh Jahromi
Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
Search for more papers by this authorCorresponding Author
Shahnaz Razavi
Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
Correspondence
Shahnaz Razavi, Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744-176, Iran.
Email: [email protected]
Search for more papers by this authorAbbas Bakhtiari
Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
Search for more papers by this authorAbstract
Peripheral nerve damage is a common clinical complication of traumatic injury occurring after accident, tumorous outgrowth, or surgical side effects. Although the new methods and biomaterials have been improved recently, regeneration of peripheral nerve gaps is still a challenge. These injuries affect the quality of life of the patients negatively. In the recent years, many efforts have been made to develop innovative nerve tissue engineering approaches aiming to improve peripheral nerve treatment following nerve injuries. Herein, we will not only outline what we know about the peripheral nerve regeneration but also offer our insight regarding the types of nerve conduits, their fabrication process, and factors associated with conduits as well as types of animal and nerve models for evaluating conduit function. Finally, nerve regeneration in a rat sciatic nerve injury model by nerve conduits has been considered, and the main aspects that may affect the preclinical outcome have been discussed.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.
REFERENCES
- Abbasipour-Dalivand, S., Mohammadi, R., & Mohammadi, V. (2015). Effects of local administration of platelet rich plasma on functional recovery after bridging sciatic nerve defect using silicone rubber chamber; an experimental study. Bulletin of Emergency & Trauma, 1, 1.
- Abedalwafa, M., Wang, F., Wang, L., & Li, C. (2013). Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: A review. Reviews on Advanced Materials Science, 2, 123–140.
- Allen, M. J., Leone, K. A., Lamonte, K., Townsend, K. L., & Mann, K. A. (2009). Cemented total knee replacement in 24 dogs: Surgical technique, clinical results, and complications. Veterinary Surgery, 5, 555–567. https://doi.org/10.1111/j.1532-950X.2009.00528.x
- Allodi, I., Udina, E., & Navarro, X. (2012). Specificity of peripheral nerve regeneration: Interactions at the axon level. Progress in Neurobiology, 1, 16–37. https://doi.org/10.1016/j.pneurobio.2012.05.005
- Altun, I., & Kurutas, E. B. (2016). Vitamin B complex and vitamin B12 levels after peripheral nerve injury. Neural Regeneration Research, 5, 842–845. https://doi.org/10.4103/1673-5374.177150
- Alvites, R., Rita Caseiro, A., Santos Pedrosa, S., Vieira Branquinho, M., Ronchi, G., Geuna, S., … Colette Maurício, A. (2018). Peripheral nerve injury and axonotmesis: State of the art and recent advances. Cogent Medicine, 1, 1466404.
10.1080/2331205X.2018.1466404 Google Scholar
- Anderson, M., Shelke, N. B., Manoukian, O. S., Yu, X., McCullough, L. D., & Kumbar, S. G. (2015). Peripheral nerve regeneration strategies: Electrically stimulating polymer based nerve growth conduits. Critical Reviews in Biomedical Engineering, 2-3, 131.
10.1615/CritRevBiomedEng.2015014015 Google Scholar
- Angius, D., Wang, H., Spinner, R. J., Gutierrez-Cotto, Y., Yaszemski, M. J., & Windebank, A. J. (2012). A systematic review of animal models used to study nerve regeneration in tissue-engineered scaffolds. Biomaterials, 32, 8034–8039. https://doi.org/10.1016/j.biomaterials.2012.07.056
- Asato, F., Butler, M., Blomberg, H., & Gordh, T. (2000). Variation in rat sciatic nerve anatomy: Implications for a rat model of neuropathic pain. Journal of the Peripheral Nervous System, 1, 19–21.
- Atkins, S., Smith, K. G., Loescher, A. R., Boissonade, F. M., O'Kane, S., Ferguson, M. W. J., & Robinson, P. P. (2006). Scarring impedes regeneration at sites of peripheral nerve repair. NeuroReport, 12, 1245–1249. https://doi.org/10.1097/01.wnr.0000230519.39456.ea
- Bakhtyari, M., Abootaleb, H., & Mansouri, K. (2010). Electrophysiological study of sciatic nerve regeneration through tubes seeded with Schwann cells. Basic and Clinical Neuroscience, 3, 49–56.
- Barberi, T., Willis, L. M., Socci, N. D., & Studer, L. (2005). Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Medicine, 6, e161. https://doi.org/10.1371/journal.pmed.0020161
- Barton, M. J., Morley, J. W., Stoodley, M. A., Lauto, A., & Mahns, D. A. (2014). Nerve repair: Toward a sutureless approach. Neurosurgical Review, 4, 585–595. https://doi.org/10.1007/s10143-014-0559-1
- Belkas, J. S., Shoichet, M. S., & Midha, R. (2004). Peripheral nerve regeneration through guidance tubes. Neurological Research, 2, 151–160.
- Bell, J. H., & Haycock, J. W. (2012). Next generation nerve guides: Materials, fabrication, growth factors, and cell delivery. Tissue Engineering. Part B, Reviews, 2, 116–128. https://doi.org/10.1089/ten.TEB.2011.0498
- Bhuiyan, M. R., Shaid, A., & Khan, M. (2014). Cationization of cotton fiber by chitosan and its dyeing with reactive dye without salt. Chemical and materials engineering, 4, 96–100.
10.13189/cme.2014.020402 Google Scholar
- Biazar, E., Keshel, S. H., & Pouya, M. (2013). Behavioral evaluation of regenerated rat sciatic nerve by a nanofibrous PHBV conduit filled with Schwann cells as artificial nerve graft. Cell Communication & Adhesion, 5, 93–103. https://doi.org/10.3109/15419061.2013.833191
- Bini, T., Gao, S., Wang, S., & Ramakrishna, S. (2006). Poly(l-lactide-co-glycolide) biodegradable microfibers and electrospun nanofibers for nerve tissue engineering: An in vitro study. Journal of Materials Science, 19, 6453–6459.
- Bini, T., Gao, S., Xu, X., Wang, S., Ramakrishna, S., & Leong, K. W. (2004). Peripheral nerve regeneration by microbraided poly(l-lactide-co-glycolide) biodegradable polymer fibers. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2, 286–295.
- Braden, T. D., Tvedten, H. W., DeCamp, C. E., Turner, T. M., Hughes, G. S., & Rentko, V. T. (1999). Radiographic, biomechanical, and pathologic effects of hemoglobin glutamer-200 in dogs undergoing cemented total hip arthroplasty. American Journal of Veterinary Research, 11, 1337–1340.
- Bremer, J., O'Connor, T., Tiberi, C., Rehrauer, H., Weis, J., & Aguzzi, A. (2010). Ablation of Dicer from murine Schwann cells increases their proliferation while blocking myelination. PLoS ONE, 8, e12450. https://doi.org/10.1371/journal.pone.0012450
- Brushart, T. M. (1988). Preferential reinnervation of motor nerves by regenerating motor axons. The Journal of Neuroscience, 3, 1026–1031.
10.1523/JNEUROSCI.08-03-01026.1988 Google Scholar
- Brushart, T. M., Mathur, V., Sood, R., & Koschorke, G.-M. (1995). Dispersion of regenerating axons across enclosed neural gaps. The Journal of Hand Surgery, 4, 557–564.
- Bu, Y., Xu, H. X., Li, X., Xu, W. J., Yin, Y. X., Dai, H. L., … Xu, P. H. (2018). A conductive sodium alginate and carboxymethyl chitosan hydrogel doped with polypyrrole for peripheral nerve regeneration. RSC Advances, 20, 10806–10817. https://doi.org/10.1039/c8ra01059e
- Buchthal, F., & Kuhl, V. (1979). Nerve conduction, tactile sensibility, and the electromyogram after suture or compression of peripheral nerve: A longitudinal study in man. Journal of Neurology, Neurosurgery, and Psychiatry, 5, 436–451.
- Cao, Y., & Wang, B. (2009). Biodegradation of silk biomaterials. International Journal of Molecular Sciences, 4, 1514–1524.
- Carriel, V., Garzon, I., Alaminos, M., & Campos, A. (2011). Evaluation of myelin sheath and collagen reorganization pattern in a model of peripheral nerve regeneration using an integrated histochemical approach. Histochemistry and Cell Biology, 6, 709–717. https://doi.org/10.1007/s00418-011-0874-3
- Carriel, V., Garzon, I., Alaminos, M., & Cornelissen, M. (2014). Histological assessment in peripheral nerve tissue engineering. Neural Regeneration Research, 18, 1657–1660. https://doi.org/10.4103/1673-5374.141798
- Carriel, V., Garzón, I., Campos, A., Cornelissen, M., & Alaminos, M. (2017). Differential expression of GAP-43 and neurofilament during peripheral nerve regeneration through bio-artificial conduits. Journal of Tissue Engineering and Regenerative Medicine, 2, 553–563.
- Ceballos, D., Navarro, X., Dubey, N., Wendelschafer-Crabb, G., Kennedy, W. R., & Tranquillo, R. T. (1999). Magnetically aligned collagen gel filling a collagen nerve guide improves peripheral nerve regeneration. Experimental Neurology, 2, 290–300. https://doi.org/10.1006/exnr.1999.7111
- Chabas, J. F., Alluin, O., Rao, G., Garcia, S., Lavaut, M. N., Risso, J. J., … Feron, F. (2008). Vitamin D2 potentiates axon regeneration. Journal of Neurotrauma, 10, 1247–1256. https://doi.org/10.1089/neu.2008.0593
- Chabas, J.-F., Stephan, D., Marqueste, T., Garcia, S., Lavaut, M.-N., Nguyen, C., … Feron, F. (2013). Cholecalciferol (vitamin D3) improves myelination and recovery after nerve injury. PLoS ONE, 5, e65034.
- Chang, Y.-C., Chen, M.-H., Liao, S.-Y., Wu, H.-C., Kuan, C.-H., Sun, J.-S., & Wang, T.-W. (2017). Multichanneled nerve guidance conduit with spatial gradients of neurotrophic factors and oriented nanotopography for repairing the peripheral nervous system. ACS Applied Materials & Interfaces, 43, 37623–37636.
- Chen, C.-J., Ou, Y.-C., Liao, S.-L., Chen, W.-Y., Chen, S.-Y., Wu, C.-W., … Hsu, S.-H. (2007). Transplantation of bone marrow stromal cells for peripheral nerve repair. Experimental Neurology, 1, 443–453.
- Chen, M.-H., Chen, P.-R., Chen, M.-H., Hsieh, S.-T., Huang, J.-S., & Lin, F.-H. (2006). Gelatin-tricalcium phosphate membrane modified with NGF and cultured Schwann cells for peripheral nerve repair: A tissue engineering approach. Biomedical Engineering: Applications, Basis and Communications, 02, 47–54.
- Chen, S. L., Chen, Z. G., Dai, H. L., Ding, J. X., Guo, J. S., Han, N., … Wang, Y. (2015). Repair, protection and regeneration of peripheral nerve injury. Neural Regeneration Research, 11, 1777–1798. https://doi.org/10.4103/1673-5374.170301
- Chen, Z.-L., Yu, W.-M., & Strickland, S. (2007). Peripheral regeneration. Annual Review of Neuroscience, 30, 209–233.
- Chevallay, B., & Herbage, D. (2000). Collagen-based biomaterials as 3D scaffold for cell cultures: Applications for tissue engineering and gene therapy. Medical and Biological Engineering and Computing, 2, 211–218.
- Chiono, V., Ciardelli, G., Vozzi, G., Cortez, J., Barbani, N., Gentile, P., & Giusti, P. (2008). Enzymatically-modified melt-extruded guides for peripheral nerve repair. Engineering in Life Sciences, 3, 226–237. https://doi.org/10.1002/elsc.200700069
- Chiono, V., Tonda-Turo, C., & Ciardelli, G. (2009). Artificial scaffolds for peripheral nerve reconstruction. International Review of Neurobiology, 87, 173–198.
- Choi, J., Kim, J. H., Jang, J. W., Kim, H. J., Choi, S. N., & Kwon, S. W. (2018). Decellularized sciatic nerve matrix as a biodegradable conduit for peripheral nerve regeneration. Neural Regeneration Research, 10, 1796–1803. https://doi.org/10.4103/1673-5374.237126
10.4103/1673?5374.237126 Google Scholar
- Chrząszcz, P., Derbisz, K., Suszyński, K., Miodoński, J., Trybulski, R., Lewin-Kowalik, J., & Marcol, W. (2018). Application of peripheral nerve conduits in clinical practice: A literature review. Neurologia i Neurochirurgia Polska, 4, 427–435.
- Cirillo, V., Bushman, J., Guarino, V., Kohn, J., & Ambrosio, L. (2018). 3D conduits for peripheral nerve regeneration. In Electrofluidodynamic technologies (EFDTs) for biomaterials and medical devices (pp. 329–349). Kidlington: Elsevier.
10.1016/B978-0-08-101745-6.00016-5 Google Scholar
- Cui, L., Jiang, J., Wei, L., Zhou, X., Fraser, J. L., Snider, B. J., & Yu, S. P. (2008). Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells, 5, 1356–1365. https://doi.org/10.1634/stemcells.2007-0333
- Cui, Y., Yao, Y., Zhao, Y., Xiao, Z., Cao, Z., Han, S., … Dai, J. (2018). Functional collagen conduits combined with human mesenchymal stem cells promote regeneration after sciatic nerve transection in dogs. Journal of Tissue Engineering and Regenerative Medicine, 5, 1285–1296.
- Das, S., Sharma, M., Saharia, D., Sarma, K. K., Sarma, M. G., Borthakur, B. B., & Bora, U. (2015). In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Biomaterials, 62, 66–75. https://doi.org/10.1016/j.biomaterials.2015.04.047
- De Luca, A. C., Lacour, S. P., Raffoul, W., & Di Summa, P. G. (2014). Extracellular matrix components in peripheral nerve repair: How to affect neural cellular response and nerve regeneration? Neural Regeneration Research, 22, 1943.
- de Ruiter, G. C., Malessy, M. J., Yaszemski, M. J., Windebank, A. J., & Spinner, R. J. (2009). Designing ideal conduits for peripheral nerve repair. Neurosurgical Focus, 2, E5. https://doi.org/10.3171/FOC.2009.26.2.E5
- Deumens, R., Bozkurt, A., Meek, M. F., Marcus, M. A., Joosten, E. A., Weis, J., & Brook, G. A. (2010). Repairing injured peripheral nerves: Bridging the gap. Progress in Neurobiology, 3, 245–276.
- Diogo, C. C., Camassa, J. A., Pereira, J. E., da Costa, L. M., Filipe, V., Couto, P. A., … Varejao, A. S. (2017). The use of sheep as a model for studying peripheral nerve regeneration following nerve injury: Review of the literature. Neurological Research, 10, 926–939. https://doi.org/10.1080/01616412.2017.1331873
- Dong, C., & Lv, Y. (2016). Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers, 2, 42.
- Doubra, N., Amiri, A., Jamalpoor, Z., Fooladi, A. A. I., & Nourani, M. R. (2015). Fabrication of PLGA conduit for peripheral nerve regeneration. Journal of Applied Tissue Engineering, 1, 13–19.
- Dreesmann, L., Mittnacht, U., Lietz, M., & Schlosshauer, B. (2009). Nerve fibroblast impact on Schwann cell behavior. European Journal of Cell Biology, 5, 285–300. https://doi.org/10.1016/j.ejcb.2009.01.001
- Dubey, N., Letourneau, P., & Tranquillo, R. (2001). Neuronal contact guidance in magnetically aligned fibrin gels: Effect of variation in gel mechano-structural properties. Biomaterials, 10, 1065–1075.
- Durgam, H., Sapp, S., Deister, C., Khaing, Z., Chang, E., Luebben, S., & Schmidt, C. E. (2010). Novel degradable co-polymers of polypyrrole support cell proliferation and enhance neurite out-growth with electrical stimulation. Journal of Biomaterials Science. Polymer Edition, 10, 1265–1282. https://doi.org/10.1163/092050609X12481751806330
- Dvali, L., & Mackinnon, S. (2003). Nerve repair, grafting, and nerve transfers. Clinics in Plastic Surgery, 2, 203–221.
- Ellis-Behnke, R., Liang, Y.-X., You, S.-W., Tay, D., Zhang, S., Schneider, G., & So, K.-F. (2006). Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Where do we go from? Nanomedicine: Nanotechnology, Biology, and Medicine, 2, 317. https://doi.org/10.1016/j.nano.2006.10.151
- Elsy, B., Khan, A. A., & Maheshwari, V. (2018). Neuroprotective effect of co-administered vitamin E isoforms on crush-injured sciatic nerve of diabetic rats. American Journal of Experimental and Clinical Research, 2, 273–280.
- Elzoghby, A. O. (2013). Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research. Journal of Controlled Release, 3, 1075–1091.
- Evans, G. (2003). Approaches to tissue engineered peripheral nerve. Clinics in Plastic Surgery, 4, 559–563. viii
- Evans, P. J., Mackinnon, S. E., Best, T. J., Wade, J. A., Awerbuck, D. C., Makino, A. P., … Midha, R. (1995). Regeneration across preserved peripheral nerve grafts. Muscle & Nerve, 10, 1128–1138. https://doi.org/10.1002/mus.880181009
- Fairbairn, N. G., Meppelink, A. M., Ng-Glazier, J., Randolph, M. A., & Winograd, J. M. (2015). Augmenting peripheral nerve regeneration using stem cells: A review of current opinion. World Journal of Stem Cells, 1, 11–26. https://doi.org/10.4252/wjsc.v7.i1.11
- Farjah, G. H., Pourheidar, B., Dolatkhah, M., & Heshmatian, B. (2016). The effect of cerebrospinal fluid in collagen guide channel on sciatic nerve regeneration in rats. Turkish Neurosurgery, 27(3), 453–459.
- Foroutan, K. S., Khodarahmi, A., Alavi, H., Pedram, S., Eslaminejad, M. R. B., & Bordbar, S. (2015). Bone marrow mesenchymal stem cell and vein conduit on sciatic nerve repair in rats. Trauma Monthly, 20(1), e23325. https://doi.org/10.5812/traumamon.23325.
- Frattini, F., Pereira Lopes, F. R., Almeida, F. M., Rodrigues, R. F., Boldrini, L. C., Tomaz, M. A., … Martinez, A. M. B. (2012). Mesenchymal stem cells in a polycaprolactone conduit promote sciatic nerve regeneration and sensory neuron survival after nerve injury. Tissue Engineering Part A, 18(19-20), 2030–2039.
- Fregnan, F., Ciglieri, E., Tos, P., Crosio, A., Ciardelli, G., Ruini, F., … Raimondo, S. (2016). Chitosan crosslinked flat scaffolds for peripheral nerve regeneration. Biomedical Materials, 4, 045010.
- Frisén, J., Lendahl, U., & Perimann, T. (2012). Mature cells can be reprogrammed to become pluripotent. The 2012 Nobel Prize in Physiology or Medicine–Advanced Information. In.
- Fullarton, A. C., Lenihan, D. V., Myles, L. M., & Glasby, M. A. (2000). Obstetric brachial plexus palsy: A large animal model for traction injury and its repair. Part 1: Age of the recipient. Journal of Hand Surgery (British), 1, 52–57. https://doi.org/10.1054/jhsb.1999.0337
- Gardiner, N. J. (2011). Integrins and the extracellular matrix: Key mediators of development and regeneration of the sensory nervous system. Developmental Neurobiology, 11, 1054–1072. https://doi.org/10.1002/dneu.20950
- Gaudin, R., Knipfer, C., Henningsen, A., Smeets, R., Heiland, M., & Hadlock, T. (2016). Approaches to peripheral nerve repair: Generations of biomaterial conduits yielding to replacing autologous nerve grafts in craniomaxillofacial surgery. BioMed Research International, 2016, 1–18. https://doi.org/10.1155/2016/3856262
- Gerth, D. J., Tashiro, J., & Thaller, S. R. (2015). Clinical outcomes for conduits and scaffolds in peripheral nerve repair. World Journal of Clinical Cases: WJCC, 2, 141.
- Gess, B., Rohr, D., & Young, P. (2013). Ascorbic acid and sodium-dependent vitamin C transporters in the peripheral nervous system: From basic science to clinical trials. Antioxidants & Redox Signaling, 17, 2105–2114. https://doi.org/10.1089/ars.2013.5380
- Ghislain, J., & Charnay, P. (2006). Control of myelination in Schwann cells: A Krox20 cis-regulatory element integrates Oct6, Brn2 and Sox10 activities. EMBO Reports, 1, 52–58. https://doi.org/10.1038/sj.embor.7400573
- Giannaccini, M., Calatayud, M. P., Poggetti, A., Corbianco, S., Novelli, M., Paoli, M., … Raffa, V. (2017). Magnetic nanoparticles for efficient delivery of growth factors: Stimulation of peripheral nerve regeneration. Advanced Healthcare Materials, 7, 1601429. https://doi.org/10.1002/adhm.201601429
- Gonçalves, J. T., Schafer, S. T., & Gage, F. H. (2016). Adult neurogenesis in the hippocampus: From stem cells to behavior. Cell, 4, 897–914.
- Gonzalez-Perez, F., Hernandez, J., Heimann, C., Phillips, J. B., Udina, E., & Navarro, X. (2018). Schwann cells and mesenchymal stem cells in laminin- or fibronectin-aligned matrices and regeneration across a critical size defect of 15 mm in the rat sciatic nerve. Journal of Neurosurgery: Spine, 1, 109–118. https://doi.org/10.3171/2017.5.SPINE161100
- Gordon, T., & Borschel, G. H. (2017). The use of the rat as a model for studying peripheral nerve regeneration and sprouting after complete and partial nerve injuries. Experimental Neurology, 287, 331–347. https://doi.org/10.1016/j.expneurol.2016.01.014
- Gu, X., Ding, F., & Williams, D. F. (2014). Neural tissue engineering options for peripheral nerve regeneration. Biomaterials, 24, 6143–6156.
- Gu, X. S., Ding, F., Yang, Y. M., & Liu, J. (2011). Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Progress in Neurobiology, 2, 204–230. https://doi.org/10.1016/j.pneurobio.2010.11.002
- Guarino, V., Cirillo, V., & Ambrosio, L. (2016). Bicomponent electrospun scaffolds to design extracellular matrix tissue analogs. Expert Review of Medical Devices, 1, 83–102. https://doi.org/10.1586/17434440.2016.1126505
- Guo, Q., Liu, C., Hai, B., Ma, T., Zhang, W., Tan, J., … Song, C. (2018). Chitosan conduits filled with simvastatin/Pluronic F-127 hydrogel promote peripheral nerve regeneration in rats. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2, 787–799.
- Guzen, F. P., & Guzen, P. F. B. (2007). Expression of neurotrophic factors by Schwann cells promotes regeneration of central nervous system. Brazilian Journal of Motor Behavior, 1, 51–57.
10.20338/bjmb.v2i1.17 Google Scholar
- Hadlock, T. A., Sundback, C. A., Hunter, D. A., Vacanti, J. P., & Cheney, M. L. (2001). A new artificial nerve graft containing rolled Schwann cell monolayers. Microsurgery, 3, 96–101.
- Haftek, J. (1976). Autogenous cable nerve grafting instead of end to end anastomosis in secondary nerve suture. Acta Neurochirurgica, 1-4, 217–221.
- Hansen, C., Dinis, T. M., Vidal, G., Ben-Mansour, K., Bresson, D., Egles, C., & Marin, F. (2016). In-vivo analysis of nerve regeneration after sciatic nerve injury in a rat model. International Biomechanics, 1, 57–65.
10.1080/23335432.2016.1233077 Google Scholar
- Herberts, C. A., Kwa, M. S., & Hermsen, H. P. (2011). Risk factors in the development of stem cell therapy. Journal of Translational Medicine, 1, 29. https://doi.org/10.1186/1479-5876-9-29
- Hong, M. H., Hong, H. J., Pang, H., Lee, H. J., Yi, S., & Koh, W. G. (2018). Controlled release of growth factors from multilayered fibrous scaffold for functional recoveries in crushed sciatic nerve. ACS Biomaterials Science & Engineering, 2, 576–586. https://doi.org/10.1021/acsbiomaterials.7b00801
- Hsu, S.-H., Chan, S.-H., Chiang, C.-M., Chen, C. C.-C., & Jiang, C.-F. (2011). Peripheral nerve regeneration using a microporous polylactic acid asymmetric conduit in a rabbit long-gap sciatic nerve transection model. Biomaterials, 15, 3764–3775.
- Hu, F., Chen, T., & Wang, W. (2017). Effects of polyethylene oxide and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofibrous substrate on omental adipose-derived mesenchymal stem cell neuronal differentiation and peripheral nerve regeneration. RSC Advances, 68, 42833–42844. https://doi.org/10.1039/c7ra08008e
- Hu, N., Wu, H., Xue, C. B., Gong, Y. P., Wu, J., Xiao, Z. Q., … Gu, X. S. (2013). Long-term outcome of the repair of 50 mm long median nerve defects in rhesus monkeys with marrow mesenchymal stem cells-containing, chitosan-based tissue engineered nerve grafts. Biomaterials, 1, 100–111. https://doi.org/10.1016/j.biomaterials.2012.09.020
- Hu, Y., Wu, Y., Gou, Z., Tao, J., Zhang, J., Liu, Q., … Gou, M. (2016). 3D-engineering of cellularized conduits for peripheral nerve regeneration. Scientific Reports, 6, 32184. https://doi.org/10.1038/srep32184
- Huang, C. W., Huang, W. C., Qiu, X., Fernandes Ferreira da Silva, F., Wang, A., Patel, S., … Li, S. (2017). The differentiation stage of transplanted stem cells modulates nerve regeneration. Scientific Reports, 1, 17401. https://doi.org/10.1038/s41598-017-17043-4
- Ikeda, M., Uemura, T., Takamatsu, K., Okada, M., Kazuki, K., Tabata, Y., … Nakamura, H. (2014). Acceleration of peripheral nerve regeneration using nerve conduits in combination with induced pluripotent stem cell technology and a basic fibroblast growth factor drug delivery system. Journal of Biomedical Materials Research Part A, 5, 1370–1378. https://doi.org/10.1002/jbm.a.34816
- Inkinen, S., Hakkarainen, M., Albertsson, A. C., & Sodergard, A. (2011). From lactic acid to poly (lactic acid) (PLA): Characterization and analysis of PLA and its precursors. Biomacromolecules, 3, 523–532. https://doi.org/10.1021/bm101302t
- Jafari, M., Delaviz, H., Torabi, S., Mohammadi, J., & Gheitasi, I. (2019). The Effect of Muscle Graft With Nerve Growth Factor and Laminin on Sciatic Nerve Repair in Rats. Basic and Clinical Neuroscience, 10, 333–344. https://doi.org/10.32598/bcn.9.10.145
- Jeans, L. A., Gilchrist, T., & Healy, D. (2007). Peripheral nerve repair by means of a flexible biodegradable glass fibre wrap: A comparison with microsurgical epineurial repair. Journal of Plastic, Reconstructive & Aesthetic Surgery, 12, 1302–1308. https://doi.org/10.1016/j.bjps.2006.06.014
- Jeong, W., Kung, H., Cheng, C. C., Lim, C., Jung, M. J., Lee, J., … Shin, Y. (2017). Dexmedetomidine to help nerve regeneration in a rat sciatic nerve injury model. Pain Research & Management, 2017, 9045608. https://doi.org/10.1155/2017/9045608
- Jiang, L., Jones, S., & Jia, X. (2017). Stem cell transplantation for peripheral nerve regeneration: Current options and opportunities. International Journal of Molecular Sciences, 1, 94. https://doi.org/10.3390/ijms18010094
- Jiang, X., Lim, S. H., Mao, H.-Q., & Chew, S. Y. (2010). Current applications and future perspectives of artificial nerve conduits. Experimental Neurology, 1, 86–101.
- Jones, I., Novikova, L. N., Novikov, L. N., Renardy, M., Ullrich, A., Wiberg, M., … Kingham, P. J. (2018). Regenerative effects of human embryonic stem cell-derived neural crest cells for treatment of peripheral nerve injury. Journal of Tissue Engineering and Regenerative Medicine, 4, E2099–E2109. https://doi.org/10.1002/term.2642
- Joshi, A. R., Bobylev, I., Zhang, G., Sheikh, K. A., & Lehmann, H. C. (2015). Inhibition of Rho-kinase differentially affects axon regeneration of peripheral motor and sensory nerves. Experimental Neurology, 263, 28–38. https://doi.org/10.1016/j.expneurol.2014.09.012
- Karbasi, S., Fekrat, F., Semnani, D., Razavi, S., & Zargar, E. N. (2016). Evaluation of structural and mechanical properties of electrospun nano-micro hybrid of poly hydroxybutyrate-chitosan/silk scaffold for cartilage tissue engineering. Advanced biomedical research, 5, 180.
- Khosravizadeh, Z., Razavi, S., Bahramian, H., & Kazemi, M. (2014). The beneficial effect of encapsulated human adipose-derived stem cells in alginate hydrogel on neural differentiation. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 4, 749–755. https://doi.org/10.1002/jbm.b.33055
- Kim, J. A., Lee, N., Kim, B. H., Rhee, W. J., Yoon, S., Hyeon, T., & Park, T. H. (2011). Enhancement of neurite outgrowth in PC12 cells by iron oxide nanoparticles. Biomaterials, 11, 2871–2877. https://doi.org/10.1016/j.biomaterials.2011.01.019
- Kim, J. R., Oh, S. H., Kwon, G. B., Namgung, U., Song, K. S., Jeon, B. H., & Lee, J. H. (2013). Acceleration of peripheral nerve regeneration through asymmetrically porous nerve guide conduit applied with biological/physical stimulation. Tissue Engineering Part A, 19(23-24), 2674–2685.
- Kitahara, A. K., Suzuki, Y., Qi, P., Nishimura, Y., Suzuki, K., Kiyotani, T., … Endo, K. (1999). Facial nerve repair using a collagen conduit in cats. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 2, 187–193.
- Klein, S., Vykoukal, J., Felthaus, O., Dienstknecht, T., & Prantl, L. (2016). Collagen type I conduits for the regeneration of nerve defects. Materials, 4, 219.
- Klein, S. M., Vykoukal, J., Li, D.-P., Pan, H.-L., Zeitler, K., Alt, E., … Prantl, L. (2016). Peripheral motor and sensory nerve conduction following transplantation of undifferentiated autologous adipose tissue-derived stem cells in a biodegradable US Food and Drug Administration-approved nerve conduit. Plastic and Reconstructive Surgery, 1, 132–139.
- Ko, C. H., Shie, M. Y., Lin, J. H., Chen, Y. W., Yao, C. H., & Chen, Y. S. (2017). Biodegradable bisvinyl sulfonemethyl-crosslinked gelatin conduit promotes regeneration after peripheral nerve injury in adult rats. Scientific Reports, 1, 17489. https://doi.org/10.1038/s41598-017-17792-2
- Konofaos, P., & Ver Halen, J. (2013). Nerve repair by means of tubulization: Past, present, future. Journal of Reconstructive Microsurgery, 03, 149–164.
- Kretschmer, T. (2015). Histological evaluation of extracellular matrix profile during sciatic nerve regeneration.
- Kriebel, A., Hodde, D., Kuenzel, T., Engels, J., Brook, G., & Mey, J. (2017). Cell-free artificial implants of electrospun fibres in a three-dimensional gelatin matrix support sciatic nerve regeneration in vivo. Journal of Tissue Engineering and Regenerative Medicine, 11(12), 3289–3304. https://doi.org/10.1002/term.2237
- Küçük, L., Günay, H., Erbaş, O., Küçük, Ü., Atamaz, F., & Coşkunol, E. (2014). Effects of platelet-rich plasma on nerve regeneration in a rat model. Acta Orthopaedica et Traumatologica Turcica, 4, 449–454.
- Kuyucu, E., Gumus, B., Erbas, O., Oltulu, F., & Bora, A. (2017). Exenatide promotes regeneration of injured rat sciatic nerve. Neural Regeneration Research, 4, 637–643. https://doi.org/10.4103/1673-5374.205105
- Labroo, P., Shea, J., Edwards, K., Ho, S., Davis, B., Sant, H., … Agarwal, J. (2017). Novel drug delivering conduit for peripheral nerve regeneration. Journal of Neural Engineering, 6, 066011.
- Lackington, W. A., Ryan, A. J., & O’Brien, F. J. (2017). Advances in nerve guidance conduit-based therapeutics for peripheral nerve repair. ACS Biomaterials Science & Engineering, 7, 1221–1235.
- Langer, R. (1993). I articles. Science, 260, 5110.
- Lee, D.-C., Chen, J.-H., Hsu, T.-Y., Chang, L.-H., Chang, H., Chi, Y.-H., & Chiu, M. (2017). Neural stem cells promote nerve regeneration through IL12-induced Schwann cell differentiation. Molecular and Cellular Neuroscience, 79, 1–11.
- Lee, D. H., & Lee, J. K. (2013). Animal models of axon regeneration after spinal cord injury. Neuroscience Bulletin, 4, 436–444. https://doi.org/10.1007/s12264-013-1365-4
- Leung, B. C., Bukamal, Z., & Al-Hamdi, A. A. (2014). A review analyzing in vivo and in vitro testing models on nerve conduits of the peripheral nervous system. Iraqi Journal of Medical Sciences, 3, 189–196.
- Li, B., Qiu, T., Iyer, K. S., Yan, Q., Yin, Y., Xie, L., … Li, S. (2015). PRGD/PDLLA conduit potentiates rat sciatic nerve regeneration and the underlying molecular mechanism. Biomaterials, 55, 44–53. https://doi.org/10.1016/j.biomaterials.2015.03.028
- Li, J., & Shi, R. (2007). Fabrication of patterned multi-walled poly-l-lactic acid conduits for nerve regeneration. Journal of Neuroscience Methods, 2, 257–264.
- Li, Y., Yu, Z. W., Men, Y. Z., Chen, X. W., & Wang, B. X. (2018). Laminin–chitosan–PLGA conduit co-transplanted with Schwann and neural stem cells to repair the injured recurrent laryngeal nerve. Experimental and Therapeutic Medicine, 2, 1250–1258. https://doi.org/10.3892/etm.2018.6343
- Liang, X. D., Cai, H. F., Hao, Y. Y., Sun, G., Song, Y. Y., & Chen, W. (2014). Sciatic nerve repair using adhesive bonding and a modified conduit. Neural Regeneration Research, 6, 594–601. https://doi.org/10.4103/1673-5374.130099
- Lin, G., Zhang, H., Sun, F., Lu, Z., Reed-Maldonado, A., Lee, Y.-C., … Lue, T. F. (2016). Brain-derived neurotrophic factor promotes nerve regeneration by activating the JAK/STAT pathway in Schwann cells. Translational Andrology and Urology, 2, 167.
- Lin, K.-M., Shea, J., Gale, B. K., Sant, H., Larrabee, P., & Agarwal, J. (2016). Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth. Journal of Micromechanics and Microengineering, 4, 045016.
- Lin, Y. L., Jen, J. C., Hsu, S. H., & Chiu, I. M. (2008). Sciatic nerve repair by microgrooved nerve conduits made of chitosan-gold nanocomposites. Surgical Neurology, 70, 9–18. https://doi.org/10.1016/j.surneu.2008.01.057
- Lindborg, J. A., Mack, M., & Zigmond, R. E. (2017). Neutrophils are critical for myelin removal in a peripheral nerve injury model of Wallerian degeneration. The Journal of Neuroscience, 43, 10258–10277. https://doi.org/10.1523/JNEUROSCI.2085-17.2017
- Liu, H., Lv, P. Z., Zhu, Y. J., Wu, H. Y., Zhang, K., Xu, F. B., … Zhao, J. M. (2017). Salidroside promotes peripheral nerve regeneration based on tissue engineering strategy using Schwann cells and PLGA: In vitro and in vivo. Scientific Reports, 7, 39869. doi: Artn 39869. https://doi.org/10.1038/Srep39869
- Lundborg, G., Dahlin, L. B., Danielsen, N., Gelberman, R. H., Longo, F. M., Powell, H. C., & Varon, S. (1982). Nerve regeneration in silicone chambers: Influence of gap length and of distal stump components. Experimental Neurology, 2, 361–375.
- Luo, L., He, Y., Wang, X., Key, B., Lee, B. H., Li, H., & Ye, Q. (2018). Potential roles of dental pulp stem cells in neural regeneration and repair. Stem Cells International, 2018, 1–15.
- Lv, Y., Nan, P., Chen, G., Sha, Y., Xia, B., & Yang, L. (2015). In vivo repair of rat transected sciatic nerve by low-intensity pulsed ultrasound and induced pluripotent stem cells-derived neural crest stem cells. Biotechnology Letters, 12, 2497–2506. https://doi.org/10.1007/s10529-015-1939-5
- Ma, Y. B., Ge, S. H., Zhang, J. H., Zhou, D., Li, L., Wang, X. F., & Su, J. H. (2017). Mesenchymal stem cell-derived extracellular vesicles promote nerve regeneration after sciatic nerve crush injury in rats. International Journal of Clinical and Experimental Pathology, 9, 10032–10039.
- Marquardt, L. (2014). The Effect of GDNF on Schwann cells and their role in peripheral nerve regeneration.
- Masaeli, E., Morshed, M., Rasekhian, P., Karbasi, S., Karbalaie, K., Karamali, F., … Nasr-Esfahani, M. H. (2012). Does the tissue engineering architecture of poly(3-hydroxybutyrate) scaffold affects cell–material interactions? Journal of Biomedical Materials Research Part A, 7, 1907–1918.
- Masgutov, R., Masgutova, G., Mullakhmetova, A., Zhuravleva, M., Shulman, A., Rogozhin, A., … Idrisova, K. (2019). Adipose-derived mesenchymal stem cells applied in fibrin glue stimulate peripheral nerve regeneration. Frontiers in Medicine, 6, 68.
- McGrath, A. (2012). Development of biosynthetic conduits for peripheral nerve repair. Umeå University,
- McGrath, A. M., Brohlin, M., Wiberg, R., Kingham, P. J., Novikov, L. N., Wiberg, M., & Novikova, L. N. (2018). Long-term effects of fibrin conduit with human mesenchymal stem cells and immunosuppression after peripheral nerve repair in a xenogenic model. Cell Medicine, 10, 1–13. 2155179018760327. doi: Unsp 2155179018760327.10.1177/2155179018760327
- Meyer, C., Stenberg, L., Gonzalez-Perez, F., Wrobel, S., Ronchi, G., Udina, E., … Dahlin, L. B. (2016). Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves. Biomaterials, 76, 33–51.
- Miao, T., Wu, D., Zhang, Y., Bo, X., Subang, M. C., Wang, P., & Richardson, P. M. (2006). Suppressor of cytokine signaling-3 suppresses the ability of activated signal transducer and activator of transcription-3 to stimulate neurite growth in rat primary sensory neurons. The Journal of Neuroscience, 37, 9512–9519. https://doi.org/10.1523/JNEUROSCI.2160-06.2006
- Mobasseri, A., Faroni, A., Minogue, B. M., Downes, S., Terenghi, G., & Reid, A. J. (2015). Polymer scaffolds with preferential parallel grooves enhance nerve regeneration. Tissue Engineering. Part A, 5-6, 1152–1162. https://doi.org/10.1089/ten.TEA.2014.0266
- Mohammadi, R., Ahsan, S., Masoumi, M., & Amini, K. (2013). Vascular endothelial growth factor promotes peripheral nerve regeneration after sciatic nerve transection in rat. Chinese Journal of Traumatology, 6, 323–329.
- Mosahebi, A., Fuller, P., Wiberg, M., & Terenghi, G. (2002). Effect of allogeneic Schwann cell transplantation on peripheral nerve regeneration. Experimental Neurology, 2, 213–223. https://doi.org/10.1006/exnr.2001.7846
- Mosahebi, A., Woodward, B., Green, C., Martin, R., & Terenghi, G. (2000). Long-term effect of vital labelling on mixed Schwann cell cultures. The Histochemical Journal, 6, 337–343.
10.1023/A:1004009512884 Google Scholar
- Mottaghitalab, F., Farokhi, M., Zaminy, A., Kokabi, M., Soleimani, M., Mirahmadi, F., … Sadeghizadeh, M. (2013). A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration. PLoS ONE, 9, e74417. https://doi.org/10.1371/journal.pone.0074417
- Mozafari, R., Kyrylenko, S., Castro, M. V., Ferreira, R. S. Jr., Barraviera, B., & Oliveira, A. L. R. (2018). Combination of heterologous fibrin sealant and bioengineered human embryonic stem cells to improve regeneration following autogenous sciatic nerve grafting repair. Journal of Venomous Animals and Toxins Including Tropical Diseases, 1, 11. https://doi.org/10.1186/s40409-018-0147-x
- Naff, N. J., & Ecklund, J. M. (2001). History of peripheral nerve surgery techniques. Neurosurgery Clinics of North America, 1, 197–209. x
- Najafpour, A. (2017). Prostaglandin E1 combined with chitosan conduit improves sciatic nerve regeneration in rats. Iranian Journal of Veterinary Surgery, 2, 43–51.
- Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., … Yamanaka, S. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 1, 101–106. https://doi.org/10.1038/nbt1374
- Navarro, X. (2016). Functional evaluation of peripheral nerve regeneration and target reinnervation in animal models: A critical overview. The European Journal of Neuroscience, 3, 271–286. https://doi.org/10.1111/ejn.13033
- Nectow, A. R., Marra, K. G., & Kaplan, D. L. (2012). Biomaterials for the development of peripheral nerve guidance conduits. Tissue Engineering. Part B, Reviews, 1, 40–50. https://doi.org/10.1089/ten.TEB.2011.0240
- Ngeow, W. C., Atkins, S., Morgan, C. R., Metcalfe, A. D., Boissonade, F. M., Loescher, A. R., & Robinson, P. P. (2011). Histomorphometric changes in repaired mouse sciatic nerves are unaffected by the application of a scar-reducing agent. Journal of Anatomy, 5, 638–645. https://doi.org/10.1111/j.1469-7580.2011.01419.x
- Ngo, T. T. B., Waggoner, P. J., Romero, A. A., Nelson, K. D., Eberhart, R. C., & Smith, G. M. (2003). Poly(l-lactide) microfilaments enhance peripheral nerve regeneration across extended nerve lesions. Journal of Neuroscience Research, 2, 227–238. https://doi.org/10.1002/jnr.10570
- Nobakhti-Afshar, A., Najafpour, A., Mohammadi, R., & Zarei, L. (2016). Assessment of neuroprotective effects of local administration of 17-beta-estradiol on peripheral nerve regeneration in ovariectomized female rats. Bulletin of Emergency & Trauma, 3, 141.
- Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A., … Murry, C. E. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. The FASEB Journal, 7, 1345–1357. https://doi.org/10.1096/fj.06-6769com
- O'Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 3, 88–95.
- Oh, S. H., Kang, J. G., Kim, T. H., Namgung, U., Song, K. S., Jeon, B. H., & Lee, J. H. (2018). Enhanced peripheral nerve regeneration through asymmetrically porous nerve guide conduit with nerve growth factor gradient. Journal of Biomedical Materials Research Part A, 1, 52–64. https://doi.org/10.1002/jbm.a.36216
- Oh, S. H., Kim, J. R., Kwon, G. B., Namgung, U., Song, K. S., & Lee, J. H. (2013). Effect of surface pore structure of nerve guide conduit on peripheral nerve regeneration. Tissue Engineering. Part C, Methods, 3, 233–243. https://doi.org/10.1089/ten.TEC.2012.0221
- Oh, S. H., Park, I. K., Kim, J. M., & Lee, J. H. (2007). In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials, 9, 1664–1671.
- Paintal, A. (1973). Conduction in mammalian nerve fibres. In Pathological conduction in nerve fibers, electromyography of sphincter muscles, automatic analysis of electromyogram with computers (Vol. 2) (pp. 19–41). Delhi: Karger Publishers.
10.1159/000394074 Google Scholar
- Park, S. C., Oh, S. H., Seo, T. B., Namgung, U., Kim, J. M., & Lee, J. H. (2010). Ultrasound-stimulated peripheral nerve regeneration within asymmetrically porous PLGA/Pluronic F127 nerve guide conduit. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2, 359–366. https://doi.org/10.1002/jbm.b.31659
- Petrova, E. (2015). Injured nerve regeneration using cell-based therapies: Current challenges. Acta Naturae (англоязычная версия), 3(26), 38–47.
- Pixley, S. K., Hopkins, T. M., Little, K. J., & Hom, D. B. (2016). Evaluation of peripheral nerve regeneration through biomaterial conduits via micro-CT imaging. Laryngoscope Investigative Otolaryngology, 6, 185–190.
- Qiu, J., Cafferty, W. B., McMahon, S. B., & Thompson, S. W. (2005). Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation. The Journal of Neuroscience, 7, 1645–1653. https://doi.org/10.1523/JNEUROSCI.3269-04.2005
- Quintes, S., & Brinkmann, B. G. (2017). Transcriptional inhibition in Schwann cell development and nerve regeneration. Neural Regeneration Research, 8, 1241–1246. https://doi.org/10.4103/1673-5374.213537
10.4103/1673?5374.213537 Google Scholar
- Quintes, S., Brinkmann, B. G., Ebert, M., Frob, F., Kungl, T., Arlt, F. A., … Nave, K. A. (2016). Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair. Nature Neuroscience, 19(8), 1050. https://doi.org/10.1038/nn.4321
- Raivich, G., & Makwana, M. (2007). The making of successful axonal regeneration: genes, molecules and signal transduction pathways. Brain Research Reviews, 2, 287–311. https://doi.org/10.1016/j.brainresrev.2006.09.005
10.1016/j.brainresrev.2006.09.005 Google Scholar
- Rajaram, A., Chen, X. B., & Schreyer, D. J. (2012). Strategic design and recent fabrication techniques for bioengineered tissue scaffolds to improve peripheral nerve regeneration. Tissue Engineering. Part B, Reviews, 6, 454–467. https://doi.org/10.1089/ten.TEB.2012.0006
- Ramli, D., Aziz, I., Mohamad, M., Abdulahi, D., & Sanusi, J. (2017). The changes in rats with sciatic nerve crush injury supplemented with evening primrose oil: Behavioural, morphologic, and morphometric analysis. Evidence-based Complementary and Alternative Medicine, 2017, 1–11 3476407. https://doi.org/10.1155/2017/3476407
- Razavi, S., Ghasemi, N., Mardani, M., & Salehi, H. (2018). Co-transplantation of human neurotrophic factor secreting cells and adipose-derived stem cells in rat model of multiple sclerosis. Cell Journal, 1, 46–52. https://doi.org/10.22074/cellj.2018.4777
- Razavi, S., Mardani, M., Kazemi, M., Esfandiari, E., Narimani, M., Esmaeili, A., & Ahmadi, N. (2013). Effect of leukemia inhibitory factor on the myelinogenic ability of Schwann-like cells induced from human adipose-derived stem cells. Cellular and Molecular Neurobiology, 2, 283–289. https://doi.org/10.1007/s10571-012-9895-2
- Razavi, S., Razavi, M. R., Esfahani, H. Z., Kazemi, M., & Mostafavi, F. S. (2013). Comparing brain-derived neurotrophic factor and ciliary neurotrophic factor secretion of induced neurotrophic factor secreting cells from human adipose and bone marrow-derived stem cells. Development, Growth & Differentiation, 6, 648–655. https://doi.org/10.1111/dgd.12072
- Razavi, S., Zarkesh-Esfahani, H., Morshed, M., Vaezifar, S., Karbasi, S., & Golozar, M. A. (2015). Nanobiocomposite of poly (lactide-co-glycolide)/chitosan electrospun scaffold can promote proliferation and transdifferentiation of Schwann-like cells from human adipose-derived stem cells. Journal of Biomedical Materials Research Part A, 8, 2628–2634.
- Ribeiro-Resende, V. T., Koenig, B., Nichterwitz, S., Oberhoffner, S., & Schlosshauer, B. (2009). Strategies for inducing the formation of bands of Büngner in peripheral nerve regeneration. Biomaterials, 29, 5251–5259.
- Rippon, H., & Bishop, A. (2004). Embryonic stem cells. Cell Proliferation, 1, 23–34.
- Rivner, M. H., Swift, T. R., & Malik, K. (2001). Influence of age and height on nerve conduction. Muscle & Nerve, 9, 1134–1141.
- Ruini, F., Tonda-Turo, C., Raimondo, S., Tos, P., Pugliese, P., Geuna, S., & Ciardelli, G. (2016). Nerve guidance conduits based on bi-layer chitosan membranes for peripheral nerve regeneration. Biomedical Science and Engineering, 1, 1–7.
10.4081/bse.2016.12 Google Scholar
- Sanen, K., Martens, W., Georgiou, M., Ameloot, M., Lambrichts, I., & Phillips, J. (2017). Engineered neural tissue with Schwann cell differentiated human dental pulp stem cells: Potential for peripheral nerve repair? Journal of Tissue Engineering and Regenerative Medicine, 12, 3362–3372.
- Sarker, M., Naghieh, S., McInnes, A. D., Schreyer, D. J., & Chen, X. (2018). Strategic design and fabrication of nerve guidance conduits for peripheral nerve regeneration. Biotechnology Journal, 7, e1700635. https://doi.org/10.1002/biot.201700635
- Sasaki, R., Aoki, S., Yamato, M., Uchiyama, H., Wada, K., Ogiuchi, H., … Ando, T. (2011). PLGA artificial nerve conduits with dental pulp cells promote facial nerve regeneration. Journal of Tissue Engineering and Regenerative Medicine, 10, 823–830.
- Sebben, A. D., Lichtenfels, M., & da Silva, J. L. (2011). Peripheral nerve regeneration: Cell therapy and neurotrophic factors. Revista Brasileira de Ortopedia, 6, 643–649. https://doi.org/10.1016/S2255-4971(15)30319-0
10.1016/S2255?4971(15)30319?0 Google Scholar
- Sell, S. A., Wolfe, P. S., Garg, K., McCool, J. M., Rodriguez, I. A., & Bowlin, G. L. (2010). The use of natural polymers in tissue engineering: A focus on electrospun extracellular matrix analogues. Polymers, 4, 522–553.
- Siemionow, M., Cwykiel, J., Uygur, S., Kwiecien, G., Oztürk, C., Szopinski, J., & Madajka, M. (2019). Application of epineural sheath conduit for restoration of 6-cm long nerve defects in a sheep median nerve model. Microsurgery, 4, 332–339.
- Soucy, J. R., Shirzaei Sani, E., Portillo Lara, R., Diaz, D., Dias, F., Weiss, A. S., … Annabi, N. (2018). Photocrosslinkable gelatin/tropoelastin hydrogel adhesives for peripheral nerve repair. Tissue Engineering. Part A, 17-18, 1393–1405. https://doi.org/10.1089/ten.TEA.2017.0502
- Sousa, I., Mendes, A., & Bártolo, P. J. (2013). PCL scaffolds with collagen bioactivator for applications in tissue engineering. Procedia Engineering, 59, 279–284.
- Sowa, Y., Imura, T., Numajiri, T., Nishino, K., & Fushiki, S. (2011). Adipose-derived stem cells produce factors enhancing peripheral nerve regeneration: Influence of age and anatomic site of origin. Stem Cells and Development, 11, 1852–1862.
- Stankiewicz, T. R., & Linseman, D. A. (2014). Rho family GTPases: Key players in neuronal development, neuronal survival, and neurodegeneration. Frontiers in Cellular Neuroscience, 8, 314. https://doi.org/10.3389/fncel.2014.00314
- Stenberg, L. (2018). Peripheral nerve regeneration after injury, repair and reconstruction in experimental diabetes: Lund University.
- Stenberg, L., Stossel, M., Ronchi, G., Geuna, S., Yin, Y., Mommert, S., … Haastert-Talini, K. (2017). Regeneration of long-distance peripheral nerve defects after delayed reconstruction in healthy and diabetic rats is supported by immunomodulatory chitosan nerve guides. BMC Neuroscience, 1, 53. https://doi.org/10.1186/s12868-017-0374-z
- Sterne, G., Coulton, G., Brown, R., Green, C., & Terenghi, G. (1997). Neurotrophin-3–enhanced nerve regeneration selectively improves recovery of muscle fibers expressing myosin heavy chains 2b. The Journal of Cell Biology, 3, 709–715.
- Stocco, E., Barbon, S., Lora, L., Grandi, F., Sartore, L., Tiengo, C., … Grandi, C. (2018). Partially oxidized polyvinyl alcohol conduitfor peripheral nerve regeneration. Scientific Reports, 1, 604. https://doi.org/10.1038/s41598-017-19058-3
- Stoyanova II van Wezel, R. J., & Rutten, W. L. (2013). In vivo testing of a 3D bifurcating microchannel scaffold inducing separation of regenerating axon bundles in peripheral nerves. Journal of Neural Engineering, 6, 066018. https://doi.org/10.1088/1741-2560/10/6/066018
- Strem, B. M., Hicok, K. C., Zhu, M., Wulur, I., Alfonso, Z., Schreiber, R. E., … Hedrick, M. H. (2005). Multipotential differentiation of adipose tissue-derived stem cells. The Keio Journal of Medicine, 3, 132–141.
10.2302/kjm.54.132 Google Scholar
- Subramanian, A., Krishnan, U. M., & Sethuraman, S. (2009). Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. Journal of Biomedical Science, 1, 108.
- Sultan, N., Amin, L. E., Zaher, A. R., Scheven, B. A., & Grawish, M. E. (2019). Dental pulp stem cells: Novel cell-based and cell-free therapy for peripheral nerve repair. World Journal of Stomatology, 1, 1–19.
10.5321/wjs.v7.i1.1 Google Scholar
- Sun, X., Xu, C., Wu, G., Ye, Q., & Wang, C. (2017). Poly (lactic-co-glycolic acid): Applications and future prospects for periodontal tissue regeneration. Polymers, 6, 189.
- Sundback, C. A., Shyu, J. Y., Wang, Y., Faquin, W. C., Langer, R. S., Vacanti, J. P., & Hadlock, T. A. (2005). Biocompatibility analysis of poly (glycerol sebacate) as a nerve guide material. Biomaterials, 27, 5454–5464. https://doi.org/10.1016/j.biomaterials.2005.02.004
- Talac, R., Friedman, J. A., Moore, M. J., Lu, L., Jabbari, E., Windebank, A. J., … Yaszemski, M. J. (2004). Animal models of spinal cord injury for evaluation of tissue engineering treatment strategies. Biomaterials, 9, 1505–1510.
- Tao, J., Hu, Y., Wang, S., Zhang, J., Liu, X., Gou, Z., … Gou, M. (2017). A 3D-engineered porous conduit for peripheral nerve repair. Scientific Reports, 7, 46038. https://doi.org/10.1038/srep46038
- Terenghi, G. (1999). Peripheral nerve regeneration and neurotrophic factors. Journal of Anatomy, 1, 1–14.
- Terzis, J., Faibisoff, B., & Williams, B. (1975). The nerve gap: Suture under tension vs. graft. Plastic and Reconstructive Surgery, 2, 166–170.
- Teuschl, A. H., Schuh, C., Halbweis, R., Pajer, K., Marton, G., Hopf, R., … Hausner, T. (2015). A new preparation method for anisotropic silk fibroin nerve guidance conduits and its evaluation in vitro and in a rat sciatic nerve defect model. Tissue Engineering. Part C, Methods, 9, 945–957. https://doi.org/10.1089/ten.TEC.2014.0606
- Thonhoff, J. R., Lou, D. I., Jordan, P. M., Zhao, X., & Wu, P. (2008). Compatibility of human fetal neural stem cells with hydrogel biomaterials in vitro. Brain Research, 1187, 42–51. https://doi.org/10.1016/j.brainres.2007.10.046
- Tos, P., Ronchi, G., Nicolino, S., Audisio, C., Raimondo, S., Fornaro, M., … Geuna, S. (2008). Employment of the mouse median nerve model for the experimental assessment of peripheral nerve regeneration. Journal of Neuroscience Methods, 1, 119–127. https://doi.org/10.1016/j.jneumeth.2007.11.030
- Tos, P., Ronchi, G., Papalia, I., Sallen, V., Legagneux, J., Geuna, S., & Giacobini-Robecchi, M. G. (2009). Methods and protocols in peripheral nerve regeneration experimental research: Part I—Experimental models. Essays on Peripheral Nerve Repair and Regeneration, 87, 47–79. https://doi.org/10.1016/S0074-7742(09)87004-9
10.1016/S0074?7742(09)87004?9 Google Scholar
- Varejão, A. S., Cabrita, A. M., Meek, M. F., Bulas-Cruz, J., Melo-Pinto, P., Raimondo, S., … Giacobini-Robecchi, M. G. (2004). Functional and morphological assessment of a standardized rat sciatic nerve crush injury with a non-serrated clamp. Journal of Neurotrauma, 11, 1652–1670.
10.1089/neu.2004.21.1652 Google Scholar
- Vatankhah, E., Semnani, D., Prabhakaran, M. P., Tadayon, M., Razavi, S., & Ramakrishna, S. (2014). Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta Biomaterialia, 2, 709–721. https://doi.org/10.1016/j.actbio.2013.09.015
- Verdú, E., Labrador, R. O., Rodríguez, F. J., Ceballos, D., Forés, J., & Navarro, X. (2002). Alignment of collagen and laminin-containing gels improve nerve regeneration within silicone tubes. Restorative Neurology and Neuroscience, 5, 169–180.
- Vleggeert-Lankamp, C. L. A. M. (2007). The role of evaluation methods in the assessment of peripheral nerve regeneration through synthetic conduits: A systematic review. Journal of Neurosurgery, 6, 1168–1189. https://doi.org/10.3171/Jns-07/12/1168
- Wang, A., Tang, Z., Park, I.-H., Zhu, Y., Patel, S., Daley, G. Q., & Li, S. (2011). Induced pluripotent stem cells for neural tissue engineering. Biomaterials, 22, 5023–5032.
- Wang, C., Jia, Y., Yang, W., Zhang, C., Zhang, K., & Chai, Y. (2018). Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits. Journal of Biomedical Materials Research Part A, 7, 2070–2077.
- Wang, G. W., Yang, H., Wu, W. F., Zhang, P., & Wang, J. Y. (2017). Design and optimization of a biodegradable porous zein conduit using microtubes as a guide for rat sciatic nerve defect repair. Biomaterials, 131, 145–159. https://doi.org/10.1016/j.biomaterials.2017.03.038
- Wang, H., Zhu, H., Guo, Q., Qian, T., Zhang, P., Li, S., … Gu, X. (2017). Overlapping mechanisms of peripheral nerve regeneration and angiogenesis following sciatic nerve transection. Frontiers in Cellular Neuroscience, 11, 323. https://doi.org/10.3389/fncel.2017.00323
- Wang, S., & Cai, L. (2010). Polymers for fabricating nerve conduits. International Journal of Polymer Science, 2010, 1–20.
- Wang, S., Yaszemski, M. J., Knight, A. M., Gruetzmacher, J. A., Windebank, A. J., & Lu, L. (2009). Photo-crosslinked poly(ε-caprolactone fumarate) networks for guided peripheral nerve regeneration: material properties and preliminary biological evaluations. Acta Biomaterialia, 5, 1531–1542.
- Wang, Y., Li, Z.-W., Luo, M., Li, Y.-J., & Zhang, K.-Q. (2015). Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects. Neural Regeneration Research, 6, 965.
- Wang, Y., Liu, Y., & Liu, Q. (2014). Ganglioside promotes the bridging of sciatic nerve defects in cryopreserved peripheral nerve allografts. Neural Regeneration Research, 20, 1820–1823. https://doi.org/10.4103/1673-5374.143429
10.4103/1673?5374.143429 Google Scholar
- Wang, Z., Zhang, P., Kou, Y., Yin, X., Han, N., & Jiang, B. (2013). Hedysari extract improves regeneration after peripheral nerve injury by enhancing the amplification effect. PLoS ONE, 7, e67921. https://doi.org/10.1371/journal.pone.0067921
- Wang, Z. Z., & Sakiyama-Elbert, S. E. (2018). Matrices, scaffolds & carriers for cell delivery in nerve regeneration. Experimental Neurology, 319, 1–17. https://doi.org/10.1016/j.expneurol.2018.09.020
- Wei, M., Li, S., Yang, Z. F., Zheng, W., & Le, W. D. (2017). Gold nanoparticles enhance the differentiation of embryonic stem cells into dopaminergic neurons via mTOR/p70S6K pathway. Nanomedicine, 11, 1305–1317. https://doi.org/10.2217/nnm-2017-0001
- Wei, Y., Gong, K., Zheng, Z., Wang, A., Ao, Q., Gong, Y., & Zhang, X. (2011). Chitosan/silk fibroin-based tissue-engineered graft seeded with adipose-derived stem cells enhances nerve regeneration in a rat model. Journal of Materials Science: Materials in Medicine, 8, 1947–1964.
- Wen, Z., & Zheng, J. Q. (2006). Directional guidance of nerve growth cones. Current Opinion in Neurobiology, 1, 52–58. https://doi.org/10.1016/j.conb.2005.12.005
- Widmer, M. S., Gupta, P. K., Lu, L., Meszlenyi, R. K., Evans, G. R., Brandt, K., … Mikos, A. G. (1998). Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials, 21, 1945–1955.
- Wiseman, A. C. (2016). Immunosuppressive medications. Clinical Journal of the American Society of Nephrology, 2, 332–343.
- Wood, R. L., Karlinsey, K. S., Thompson, A. D., Rigby, M. N., Boatright, G. D., Pitt, W. G., … Cook, A. D. (2018). Baseline effects of lysophosphatidylcholine and nerve growth factor in a rat model of sciatic nerve regeneration after crush injury. Neural Regeneration Research, 5, 846–853. https://doi.org/10.4103/1673-5374.232479
10.4103/1673?5374.232479 Google Scholar
- Xu, F. B., Zhang, K., Lv, P. Z., Lu, R. B., Zheng, L., & Zhao, J. M. (2017). NECL1 coated PLGA as favorable conduits for repair of injured peripheral nerve. Materials Science & Engineering, C: Materials for Biological Applications, 70, 1132–1140. https://doi.org/10.1016/j.msec.2016.03.043
- Xu, J.-J., Chen, E.-Y., Lu, C.-L., & He, C. (2009). Recombinant ciliary neurotrophic factor promotes nerve regeneration and induces gene expression in silicon tube-bridged transected sciatic nerves in adult rats. Journal of Clinical Neuroscience, 6, 812–817.
- Xue, C., Zhu, H., Tan, D., Ren, H., Gu, X., Zhao, Y., … Gu, J. (2018). Electrospun silk fibroin-based neural scaffold for bridging a long sciatic nerve gap in dogs. Journal of Tissue Engineering and Regenerative Medicine, 2, e1143–e1153.
- Yao, L., de Ruiter, G. C., Wang, H., Knight, A. M., Spinner, R. J., Yaszemski, M. J., … Pandit, A. (2010). Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit. Biomaterials, 22, 5789–5797.
- Yao, Y., Cui, Y., Zhao, Y., Xiao, Z., Li, X., Han, S., … Pan, J. (2018). Efect of longitudinally oriented collagen conduit combined with nerve growth factor on nerve regeneration after dog sciatic nerve injury. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 6, 2131–2139.
- Yapici, A. K., Bayram, Y., Akgun, H., Gumus, R., & Zor, F. (2017). The effect of in vivo created vascularized neurotube on peripheric nerve regeneration. Injury, 7, 1486–1491.
- Yin, K., Divakar, P., Hong, J., Moodie, K. L., Rosen, J. M., Sundback, C. A., … Wegst, U. G. (2018). Freeze-cast porous chitosan conduit for peripheral nerve repair. MRS Advances, 30, 1677–1683.
- Yiu, G., & He, Z. (2006). Glial inhibition of CNS axon regeneration. Nature Reviews. Neuroscience, 8, 617–627. https://doi.org/10.1038/nrn1956
- Yokoi, T., Uemura, T., Takamatsu, K., Shintani, K., Onode, E., Okada, M., … Nakamura, H. (2018). Bioabsorbable nerve conduits coated with induced pluripotent stem cell-derived neurospheres enhance axonal regeneration in sciatic nerve defects in aged mice. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 5, 1752–1758.
- Yoshii, S., Oka, M., Shima, M., Taniguchi, A., & Akagi, M. (2003). Bridging a 30-mm nerve defect using collagen filaments. Journal of Biomedical Materials Research Part A, 2, 467–474. https://doi.org/10.1002/jbm.a.10103
- Yu, B., Zhou, S., Wang, Y., Qian, T., Ding, G., Ding, F., & Gu, X. (2012). miR-221/222 promote Schwann cell proliferation and migration by targeting LASS2 following sciatic nerve injury. Journal of Cell Science, 125, 2675–2683. 098996
- Yu, W., Zhao, W., Zhu, C., Zhang, X., Ye, D., Zhang, W., … Zhang, Z. (2011). Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ε-caprolactone) nerve conduit with tailored degradation rate. BMC Neuroscience, 1, 68.
- Yuan, Y., Zhang, P., Yang, Y., Wang, X., & Gu, X. (2004). The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials, 18, 4273–4278.
- Yucel, D., Kose, G. T., & Hasirci, V. (2010). Polyester based nerve guidance conduit design. Biomaterials, 7, 1596–1603.
- Yurie, H., Ikeguchi, R., Aoyama, T., Kaizawa, Y., Tajino, J., Ito, A., … Matsuda, S. (2017). The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model. PLoS ONE, 2, e0171448. https://doi.org/10.1371/journal.pone.0171448
- Zarinfard, G., Tadjalli, M., Razavi, S., & Kazemi, M. (2016). Effect of laminin on neurotrophic factors expression in Schwann-like cells induced from human adipose-derived stem cells in vitro. Journal of Molecular Neuroscience, 4, 465–473. https://doi.org/10.1007/s12031-016-0808-6
- Zhang, B. G., Quigley, A. F., Myers, D. E., Wallace, G. G., Kapsa, R. M., & Choong, P. F. (2014). Recent advances in nerve tissue engineering. The International Journal of Artificial Organs, 4, 277–291. https://doi.org/10.5301/ijao.5000317
- Zhang, P., Zhang, C., Kou, Y., Yin, X., Zhang, H., & Jiang, B. (2009). The histological analysis of biological conduit sleeve bridging rhesus monkey median nerve injury with small gap. Artificial Cells, Blood Substitutes, and Biotechnology, 2, 101–104.
10.1080/10731190902742620 Google Scholar
- Zhao, Y., Zhang, Q., Zhao, L., Gan, L., Yi, L., Zhao, Y., … Chen, Y. (2017). Enhanced peripheral nerve regeneration by a high surface area to volume ratio of nerve conduits fabricated from hydroxyethyl cellulose/soy protein composite sponges. ACS Omega, 11, 7471–7481. https://doi.org/10.1021/acsomega.7b01003
- Zhou, F. Q., & Snider, W. D. (2006). Intracellular control of developmental and regenerative axon growth. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1473, 1575–1592. https://doi.org/10.1098/rstb.2006.1882
- Zhou, Z., Liu, X., Wu, W., Park, S., Miller, A. L. II, Terzic, A., & Lu, L. (2018). Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds. Biomaterials Science, 9, 2375–2385.
- Zhu, L., Wang, K., Ma, T., Huang, L., Xia, B., Zhu, S., … Luo, K. (2017). Noncovalent bonding of RGD and YIGSR to an electrospun poly(ε-caprolactone) conduit through peptide self-assembly to synergistically promote sciatic nerve regeneration in rats. Advanced Healthcare Materials, 8, 1600860.
- Zhuang, H., Bu, S., Hua, L., Darabi, M. A., Cao, X., & Xing, M. (2016). Gelatin-methacrylamide gel loaded with microspheres to deliver GDNF in bilayer collagen conduit promoting sciatic nerve growth. International Journal of Nanomedicine, 11, 1383–1394. https://doi.org/10.2147/IJN.S96324