A Review on SAPO-34 Zeolite Materials for CO2 Capture and Conversion
Corresponding Author
Dr. Muhammad Usman
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261,‘ Saudi Arabia
Search for more papers by this authorAkram S. Ghanem
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Syed Niaz Ali Shah
Center for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorDr. Mustapha D. Garba
Department of Chemistry, University of Glasgow, G12 8QQ Glasgow, United Kingdom
Search for more papers by this authorMohd Yusuf Khan
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261,‘ Saudi Arabia
Search for more papers by this authorDr. Sikandar Khan
Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorDr. Muhammad Humayun
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 PR China
Search for more papers by this authorDr. Asim Laeeq Khan
Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 45550 Islamabad, Pakistan
Search for more papers by this authorCorresponding Author
Dr. Muhammad Usman
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261,‘ Saudi Arabia
Search for more papers by this authorAkram S. Ghanem
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Syed Niaz Ali Shah
Center for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorDr. Mustapha D. Garba
Department of Chemistry, University of Glasgow, G12 8QQ Glasgow, United Kingdom
Search for more papers by this authorMohd Yusuf Khan
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261,‘ Saudi Arabia
Search for more papers by this authorDr. Sikandar Khan
Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorDr. Muhammad Humayun
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 PR China
Search for more papers by this authorDr. Asim Laeeq Khan
Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 45550 Islamabad, Pakistan
Search for more papers by this authorAbstract
Among several known zeolites, silicoaluminophosphate (SAPO)-34 zeolite exhibits a distinct chemical structure, unique pore size distribution, and chemical, thermal, and ion exchange capabilities, which have recently attracted considerable research attention. Global carbon dioxide (CO2) emissions are a serious environmental issue. Current atmospheric CO2 level exceeds 414 parts per million (ppm), which greatly influences humans, fauna, flora, and the ecosystem as a whole. Zeolites play a vital role in CO2 removal, recycling, and utilization. This review summarizes the properties of the SAPO-34 zeolite and its role in CO2 capture and separation from air and natural gas. In addition, due to their high thermal stability and catalytic nature, CO2 conversions into valuable products over single metal, bi-metallic, and tri-metallic catalysts and their oxides supported on SAPO-34 were also summarized. Considering these accomplishments, substantial problems related to SAPO-34 are discussed, and future recommendations are offered in detail to predict how SAPO-34 could be employed for greenhouse gas mitigation.
References
- 1D. A. Lashof, D. R. Ahuja, Nature 1990, 344, 529–531.
- 2J. K. Donald, in: Building STEM Skills Through Environmental Education, ed. by T. S. Stephen, D. Janese, IGI Global, Hershey, PA, USA, 2021, pp. 172–218.
10.4018/978-1-7998-2711-5.ch007 Google Scholar
- 3T. D. Burns, K. N. Pai, S. G. Subraveti, S. P. Collins, M. Krykunov, A. Rajendran, T. K. Woo, Environ. Sci. Technol. 2020, 54, 4536–4544.
- 4M. Usman, N. Iqbal, T. Noor, N. Zaman, A. Asghar, M. M. Abdelnaby, A. Galadima, A. Helal, Chem. Rec. 2021. https://doi.org/10.1002/tcr.202100230.
- 5S. Agostini, B. P. Harvey, S. Wada, K. Kon, M. Milazzo, K. Inaba, J. M. Hall-Spencer, Sci. Rep. 2018, 8, 11354.
- 6F. Gervais, Earth-Sci. Rev. 2016, 155, 129–135.
- 7L. M. Alsarhan, A. S. Alayyar, N. B. Alqahtani, N. H. Khdary, Sustainability 2021, 13, 11625.
- 8E. Williams, KAPSARC 2019, 1–13.
- 9H. Yamada, Polym. J. 2020, 93–102.
- 10S. Ó Snæbjörnsdóttir, B. Sigfússon, C. Marieni, D. Goldberg, S. R. Gislason, E. H. Oelkers, Nat. Rev. Earth Environ. 2020, 1, 90–102.
10.1038/s43017-019-0011-8 Google Scholar
- 11S. Chu, Science 2009, 325, 1599.
- 12K. S. Lackner, Science 2003, 300, 1677.
- 13M. D. Garba, M. Usman, S. Khan, F. Shehzad, A. Galadima, M. F. Ehsan, A. S. Ghanem, M. Humayun, J. Environ. Chem. Eng. 2021, 9, 104756.
- 14C. Molina-Fernández, P. Luis, J. CO2 Util. 2021, 47, 101475.
- 15S. Kumar, R. Srivastava, J. Koh, J. CO2 Util. 2020, 41, 101251.
- 16A. Dindi, D. V. Quang, L. F. Vega, E. Nashef, M. R. M. Abu-Zahra, J. CO2 Util. 2019, 29, 82–102.
- 17Y.-J. Heo, D. B. Seong, S.-J. Park, J. CO2 Util. 2019, 34, 472–478.
- 18S. Khan, Y. A. Khulief, A. A. Al-Shuhail, Environ. Earth Sci. 2020, 79, 294.
- 19S. Khan, Y. A. Khulief, A. A. Al-Shuhail, Int. J. Geomech. 2017, 17, 04017039.
- 20S. Khan, Y. Khulief, A. Al-Shuhail, Int. J. Glob. Warm. 2018, 14, 462–487.
- 21S. Khan, Y. A. Khulief, A. Al-Shuhail, Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 23–52.
- 22S. Khan, Y. Khulief, A. Al-Shuhail, S. Bashmal, N. Iqbal, Sustainability 2020, 12, 9800.
- 23N. Tara, Z. Shamair, N. Habib, M. Craven, M. R. Bilad, M. Usman, X. Tu, A. L. Khan, Chem. Eng. Res. Des. 2022, 178, 136–147.
- 24M. Yaseen, M. Humayun, A. Khan, M. Usman, H. Ullah, A. A. Tahir, H. Ullah, Energies 2021, 14, 1278.
- 25M. Usman, M. Humayun, S. S. Shah, H. Ullah, A. A. Tahir, A. Khan, H. Ullah, Energies 2021, 14, 2281.
- 26M. Usman, M. Humayun, M. D. Garba, L. Ullah, Z. Zeb, A. Helal, M. H. Suliman, B. Y. Alfaifi, N. Iqbal, M. Abdinejad, A. A. Tahir, H. Ullah, Nanomaterials 2021, 11, 2029.
- 27D. Israf Ud, N. Qazi, D. G. Mustapha, I. A. Abdulrahman, A. A. Mshari, U. Muhammad, Mini-Rev. Org. Chem. 2022, 19, 92–110.
- 28M. Humayun, A. Zada, Z. Li, M. Xie, X. Zhang, Y. Qu, F. Raziq, L. Jing, Appl. Catal. B. 2016, 180, 219–226.
- 29M. Humayun, H. Ullah, A. A. Tahir, A. R. bin Mohd Yusoff, M. A. Mat Teridi, M. K. Nazeeruddin, W. Luo, Chem. Rec. 2021, 66, 314–338.
- 30S. S. Shah, M. N. Shaikh, M. Y. Khan, M. A. Alfasane, M. M. Rahman, M. A. Aziz, Chem. Rec. 2021, 21, 1631–1665.
- 31C. Costentin, M. Robert, J.-M. Savéant, Chem. Soc. Rev. 2013, 42, 2423–2436.
- 32Y.-B. Huang, J. Liang, X.-S. Wang, R. Cao, Chem. Soc. Rev. 2017, 46, 126–157.
- 33L. Wang, W. Chen, D. Zhang, Y. Du, R. Amal, S. Qiao, J. Wu, Z. Yin, Chem. Soc. Rev. 2019, 48, 5310–5349.
- 34M. Humayun, H. Ullah, M. Usman, A. Habibi-Yangjeh, A. A. Tahir, C. Wang, W. Luo, J. Energy Chem. 2022, 66, 314–338.
- 35A. Helal, M. Usman, M. E. Arafat, M. M. Abdelnaby, J. Ind. Eng. Chem. 2020, 89, 104–110.
- 36L. Yaqoob, T. Noor, N. Iqbal, H. Nasir, M. Sohail, N. Zaman, M. Usman, Renewable Energy 2020, 156, 1040–1054.
- 37L. Ullah, G. Zhao, Z. Xu, H. He, M. Usman, S. Zhang, Sci. China Chem. 2018, 61, 402–411.
- 38L. Ullah, G. Zhao, J.-X. Ma, M. Usman, R. Khan, N. Hedin, Fuel 2022, 310, 122462.
- 39M. A. Marwat, M. Humayun, M. W. Afridi, H. Zhang, M. R. Abdul Karim, M. Ashtar, M. Usman, S. Waqar, H. Ullah, C. Wang, W. Luo, ACS Appl. Energ. Mater. 2021, 4, 12007–12031.
- 40E. G. Derouane, J. C. Védrine, R. R. Pinto, P. M. Borges, L. Costa, M. A. N. D. A. Lemos, F. Lemos, F. R. Ribeiro, Catal. Rev. 2013, 55, 454–515.
- 41N. J. Azhari, N. Nurdini, S. Mardiana, T. Ilmi, A. T. N. Fajar, I. G. B. N. Makertihartha, Subagjo, G. T. M. Kadja, J. CO2 Util. 2022, 59, 101969.
- 42D. W. Breck, D. W. Breck, Zeolite molecular sieves: structure, chemistry, and use. Editor, John Wiley & Sons, 1973.
- 43D. Breck, J. Smith, Sci. Am. 1959, 200, 85–96.
- 44E. M. Flanigen, in: Stud. Surf. Sci. Catal., ed. by H. van Bekkum, E. M. Flanigen, J. C. Jansen, Elsevier, 1991, Vol. 58, pp. 13–34.
- 45E. M. Flanigen, in: Stud. Surf. Sci. Catal., ed. by H. van Bekkum, E. M. Flanigen, P. A. Jacobs, J. C. Jansen, Elsevier, 2001, Vol. 137, pp. 11–35.
- 46M. Usman, J. Zhu, K. Chuiyang, M. T. Arslan, A. Khan, A. Galadima, O. Muraza, I. Khan, A. Helal, B. A. Al-Maythalony, Z. H. Yamani, Catalysts 2019, 9, 919.
- 47M. T. Arslan, B. A. Qureshi, S. Z. A. Gilani, D. Cai, Y. Ma, M. Usman, X. Chen, Y. Wang, F. Wei, ACS Catal. 2019, 9, 2203–2212.
- 48J. Zhu, Y. Li, U. Muhammad, D. Wang, Y. Wang, Chem. Eng. J. 2017, 316, 187–195.
- 49Y. Ma, D. Cai, Y. Li, N. Wang, U. Muhammad, A. Carlsson, D. Tang, W. Qian, Y. Wang, D. Su, F. Wei, RSC Adv. 2016, 6, 74797–74801.
- 50M. Usman, D. Li, R. Razzaq, M. Yaseen, C. Li, S. Zhang, J. Ind. Eng. Chem. 2015, 23, 21–26.
- 51H. Wang, Y. Cao, D. Li, U. Muhammad, C. Li, Z. Li, S. Zhang, J. Renew. Sustain. Energy 2013, 5, 053114.
- 52H. H. Zhang, Y. M. Cao, M. Usman, L. J. Li, C. S. Li, Adv. Mater. 2012, 531, 263–267.
- 53T. Kan, X. Sun, H. Wang, C. Li, U. Muhammad, Energy Fuels 2012, 26, 3604–3611.
- 54D. Li, H. Zhang, M. Usman, Z. Li, L. Han, C. Li, S. Zhang, J. Renew. Sustain. Energy 2014, 6, 033132.
- 55B. M. Lok, C. A. Messina, R. L. Patton, R. T. Gajek, T. R. Cannan, E. M. Flanigen, J. Am. Chem. Soc. 1984, 106, 6092–6093.
- 56S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, E. M. Flanigen, J. Am. Chem. Soc. 1982, 104, 1146–1147.
- 57Database of zeolite structures, http://www.iza-structure.org/databases/.
- 58Z. Yan, B. Chen, Y. Huang, Solid State Nucl. Magn. Reson. 2009, 35, 49–60.
- 59A. T. Aguayo, A. G. Gayubo, R. Vivanco, M. Olazar, J. Bilbao, Appl. Catal. A 2005, 283, 197–207.
- 60G. Sastre, D. W. Lewis, C. R. A. Catlow, J. Phys. Chem. B 1997, 101, 5249–5262.
- 61G. Liu, P. Tian, J. Li, D. Zhang, F. Zhou, Z. Liu, Microporous Mesoporous Mater. 2008, 111, 143–149.
- 62Ø. B. Vistad, D. E. Akporiaye, K. P. Lillerud, J. Phys. Chem. B 2001, 105, 12437–12447.
- 63Y. Chen, H. Zhou, J. Zhu, Q. Zhang, Y. Wang, D. Wang, F. Wei, Catal. Lett. 2008, 124, 297–303.
- 64M. Hunger, M. Seiler, A. Buchholz, Catal. Lett. 2001, 74, 61–68.
- 65I. M. Dahl, H. Mostad, D. Akporiaye, R. Wendelbo, Microporous Mesoporous Mater. 1999, 29, 185–190.
- 66Y.-J. Lee, S.-C. Baek, K.-W. Jun, Appl. Catal. A 2007, 329, 130–136.
- 67Y. Hirota, K. Murata, M. Miyamoto, Y. Egashira, N. Nishiyama, Catal. Lett. 2010, 140, 22–26.
- 68S. Askari, R. Halladj, M. Sohrabi, Microporous Mesoporous Mater. 2012, 163, 334–342.
- 69A. M. Prakash, S. Unnikrishnan, J. Chem. Soc. Faraday Trans. 1994, 90, 2291–2296.
- 70S. Askari, Z. Sedighi, R. Halladj, Microporous Mesoporous Mater. 2014, 197, 229–236.
- 71R. B. Rostami, M. Ghavipour, R. M. Behbahani, A. Aghajafari, J. Nat. Gas Sci. Eng. 2014, 20, 312–318.
- 72M. Sedighi, H. Bahrami, J. Towfighi Darian, RSC Adv. 2014, 4, 49762–49769.
- 73H.-J. Chae, I.-J. Park, Y.-H. Song, K.-E. Jeong, C.-U. Kim, C.-H. Shin, S.-Y. Jeong, J. Nanosci. Nanotechnol. 2010, 10, 195–202.
- 74M. Zokaie, U. Olsbye, K. P. Lillerud, O. Swang, Microporous Mesoporous Mater. 2012, 158, 175–179.
- 75W. Dai, C. Wang, M. Dyballa, G. Wu, N. Guan, L. Li, Z. Xie, M. Hunger, ACS Catal. 2015, 5, 317–326.
- 76N. Nishiyama, M. Kawaguchi, Y. Hirota, D. Van Vu, Y. Egashira, K. Ueyama, Appl. Catal. A 2009, 362, 193–199.
- 77Q. Sun, Z. Xie, J. Yu, Natl. Sci. Rev. 2017, 5, 542–558.
- 78Z. Yang, L. Zhang, Y. Zhou, H. Wang, L. Wen, E. Kianfar, Rev. Inorg. Chem. 2020, 40, 91–105.
- 79G. Yang, J. Han, Y. Huang, X. Chen, V. Valtchev, Chin. J. Chem. Eng. 2020, 28, 2022–2027.
- 80M. S. Ahmad, C. K. Cheng, P. Bhuyar, A. E. Atabani, A. Pugazhendhi, N. T. L. Chi, T. Witoon, J. W. Lim, J. C. Juan, Fuel 2021, 283, 118851.
- 81S. Askari, A. Bashardoust Siahmard, R. Halladj, S. Miar Alipour, Powder Technol. 2016, 301, 268–287.
- 82G. A. Nasser, O. Muraza, T. Nishitoba, Z. Malaibari, T. K. Al-Shammari, T. Yokoi, Microporous Mesoporous Mater. 2019, 274, 277–285.
- 83G. A. Nasser, O. Muraza, T. Nishitoba, Z. Malaibari, Z. H. Yamani, T. K. Al-Shammari, T. Yokoi, Ind. Eng. Chem. Res. 2019, 58, 60–68.
- 84H. A. Salih, O. Muraza, B. Abussaud, T. K. Al-Shammari, T. Yokoi, Ind. Eng. Chem. Res. 2018, 57, 6639–6646.
- 85G. A. Nasser, A. A. Al-Qadri, A. K. Jamil, I. A. Bakare, M. A. Sanhoob, O. Muraza, Z. H. Yamani, T. Yokoi, Q. Saleem, D. Alsewdan, Ind. Eng. Chem. Res. 2021, 60, 12189–12199.
- 86M. Hartmann, A. G. Machoke, W. Schwieger, Chem. Soc. Rev. 2016, 45, 3313–3330.
- 87G. Yang, Y. Wei, S. Xu, J. Chen, J. Li, Z. Liu, J. Yu, R. Xu, J. Phys. Chem. C 2013, 117, 8214–8222.
- 88S. M. A. Ahmadi, S. Askari, R. Halladj, Afinidad 2013, 70.
- 89M. A. Carreon, J. Mater. Res. 2018, 33, 32–43.
- 90J. Xu, K.-G. Haw, Z. Li, S. Pati, Z. Wang, S. Kawi, React. Chem. Eng. 2021, 6, 52–66.
- 91G. Singh, J. Lee, A. Karakoti, R. Bahadur, J. Yi, D. Zhao, K. AlBahily, A. Vinu, Chem. Soc. Rev. 2020, 49, 4360–4404.
- 92A. Golmakani, S. Fatemi, J. Tamnanloo, Ind. Eng. Chem. Res. 2016, 55, 334–350.
- 93J.-Y. Kim, J. Kim, S.-T. Yang, W.-S. Ahn, Fuel 2013, 108, 515–520.
- 94M. Ashraf, I. Khan, M. Usman, A. Khan, S. S. Shah, A. Z. Khan, K. Saeed, M. Yaseen, M. F. Ehsan, M. N. Tahir, N. Ullah, Chem. Res. Toxicol. 2020, 33, 1292–1311.
- 95C.-H. Yu, C.-H. Huang, C.-S. Tan, Aerosol Air Qual. Res. 2012, 12, 745–769.
- 96C. Gebald, J. A. Wurzbacher, P. Tingaut, T. Zimmermann, A. Steinfeld, Environ. Sci. Technol. 2011, 45, 9101–9108.
- 97M. Minelli, V. Medri, E. Papa, F. Miccio, E. Landi, F. Doghieri, Chem. Eng. Sci. 2016, 148, 267–274.
- 98S. Shafiq, B. A. Al-Maythalony, M. Usman, M. S. Ba-Shammakh, A. A. Al-Shammari, RSC Adv. 2021, 11, 34319–34328.
- 99M. Usman, A. Helal, M. M. Abdelnaby, A. M. Alloush, M. Zeama, Z. H. Yamani, Chem. Rec. 2021, 21, 1771–1791.
- 100S. O. Adio, S. A. Ganiyu, M. Usman, I. Abdulazeez, K. Alhooshani, Chem. Eng. J. 2020, 382, 122964.
- 101M. M. Abdelnaby, A. M. Alloush, N. A. A. Qasem, B. A. Al-Maythalony, R. B. Mansour, K. E. Cordova, O. C. S. Al Hamouz, J. Mater. Chem. A 2018, 6, 6455–6462.
- 102A. R. Shaikh, M. Ashraf, T. AlMayef, M. Chawla, A. Poater, L. Cavallo, Chem. Phys. Lett. 2020, 745, 137239.
- 103G. Sneddon, A. Greenaway, H. H. Yiu, Adv. Energy Mater. 2014, 4, 1301873.
- 104Q. Wang, J. Luo, Z. Zhong, A. Borgna, Energy Environ. Sci. 2011, 4, 42–55.
- 105H. Zhang, K. Xue, C. Cheng, D. Gao, H. Chen, Sep. Purif. Technol. 2021, 265, 118521.
- 106L. K. G. Bhatta, S. Subramanyam, M. D. Chengala, S. Olivera, K. Venkatesh, J. Cleaner Prod. 2015, 103, 171–196.
- 107T. N. G. Borhani, A. Azarpour, V. Akbari, S. R. Wan Alwi, Z. A. Manan, Int. J. Greenhouse Gas Control 2015, 41, 142–162.
- 108L. Li, N. Zhao, W. Wei, Y. Sun, Fuel 2013, 108, 112–130.
- 109M. Y. Khan, A. Khan, J. K. Adewole, M. Naim, S. I. Basha, M. A. Aziz, J. Nat. Gas Sci. Eng. 2020, 75, 103156.
- 110M. Asim, A. Khan, A. Helal, W. Alshitari, U. A. Akbar, M. Y. Khan, Chem. Asian J. 2021, 16, 1839–1848.
- 111M. G. Veerabhadrappa, M. M. Maroto-Valer, Y. Chen, S. Garcia, ACS Appl. Mater. Interfaces 2021, 13, 11805–11813.
- 112M. K. Ram Reddy, Z. P. Xu, G. Q. Lu, J. C. Diniz da Costa, Ind. Eng. Chem. Res. 2006, 45, 7504–7509.
- 113A. M. Varghese, G. N. Karanikolos, Int. J. Greenhouse Gas Control 2020, 96, 103005.
- 114A. Mukhtar, S. Saqib, N. B. Mellon, S. Rafiq, M. Babar, S. Ullah, N. Muhammad, A. L. Khan, M. Ayoub, M. Ibrahim, K. Maqsood, M. A. Bustam, A. G. Al-Sehemi, J. J. Klemeš, S. Asif, A. Bokhari, J. Cleaner Prod. 2020, 277, 123999.
- 115A. A. F. Eftaiha, A. K. Qaroush, A. K. Hasan, K. I. Assaf, F. A. M. Al-Qaisi, M. E. Melhem, B. A. Al-Maythalony, M. Usman, New J. Chem. 2021, 45, 16452–16460.
- 116N. A. Khan, M. Humayun, M. Usman, Z. A. Ghazi, A. Naeem, A. Khan, A. L. Khan, A. A. Tahir, H. Ullah, Energies 2021, 14, 2267.
- 117M. Usman, A. Helal, US. Patents, KFUPM US20210187475 A1 2021.
- 118M. Usman, B. A. Al-Maythalony, US. Patents, KFUPM US20210138433 A1 2021.
- 119I. U. Din, M. Usman, S. Khan, A. Helal, M. A. Alotaibi, A. I. Alharthi, G. Centi, J. CO2 Util. 2021, 43, 101361.
- 120M. Usman, M. Ali, B. A. Al-Maythalony, A. S. Ghanem, O. W. Saadi, M. Ali, M. A. Jafar Mazumder, S. Abdel-Azeim, M. A. Habib, Z. H. Yamani, W. Ensinger, ACS Appl. Mater. Interfaces 2020, 12, 49992–50001.
- 121M. Usman, M. M. Abdelnaby, S. Shafiq, A. M. Alloush, A. Helal, Z. H. Yamani, in: Book A metal-organic framework membrane for olefin-paraffin separation, ed., ed. by Editor, Engineers Australia, City, 2020, Chap. Chapter, pp. 329.
- 122A. Helal, K. E. Cordova, M. E. Arafat, M. Usman, Z. H. Yamani, Inorg. Chem. Front. 2020, 7, 3571–3577.
- 123A. S. Ghanem, M. Ba-Shammakh, M. Usman, M. F. Khan, H. Dafallah, M. A. Habib, B. A. Al-Maythalony, J. Appl. Polym. Sci. 2020, 137, 48513.
- 124A. M. Bassem, M. Usman, KFUPM, U. Patent US16/720,535 2020.
- 125B. A. Al-Maythalony, A. S. Ghanem, M. Ba-Shammakh, M. Usman, US. Patents, KFUPM US16/285,724 2020.
- 126A. Helal, M. Fettouhi, M. E. Arafat, M. Y. Khan, M. A. Sanhoob, J. CO2 Util. 2021, 50, 101603.
- 127A. Khan, A. M. Elsharif, A. Helal, Z. H. Yamani, A. Saeed Hakeem, M. Yusuf Khan, Chem. Asian J. 2021, 27, 11132–11140.
- 128A. Iizuka, K. Hashimoto, H. Nagasawa, K. Kumagai, Y. Yanagisawa, A. Yamasaki, Sep. Purif. Technol. 2012, 101, 49–59.
- 129L. M. Romeo, I. Bolea, J. M. Escosa, Appl. Therm. Eng. 2008, 28, 1039–1046.
- 130G. T. Rochelle, Science 2009, 325, 1652–1654.
- 131J. Tamnanloo, S. Fatemi, A. Golmakani, Adsorp. Sci. Technol. 2014, 32, 707–716.
- 132X. Hu, Q. Yu, Y. Cui, J. Huang, E. Shiko, Y. Zhou, Z. Zeng, Y. Liu, R. Zhang, Energy Fuels 2019, 33, 11507–11515.
- 133S. S. Ashraf Talesh, S. Fatemi, S. J. Hashemi, P. Emrani, Iran. J. Chem. Chem. Eng. 2010, 29, 37–45.
- 134Y. Luo, H. H. Funke, J. L. Falconer, R. D. Noble, Ind. Eng. Chem. Res. 2016, 55, 9749–9757.
- 135M. Romero, J. C. Navarro, L. F. Bobadilla, M. I. Domínguez, S. Ivanova, F. Romero-Sarria, M. A. Centeno, J. A. Odriozola, Microporous Mesoporous Mater. 2020, 298, 110071.
- 136D. Fan, P. Tian, S. Xu, Q. Xia, X. Su, L. Zhang, Y. Zhang, Y. He, Z. Liu, J. Mater. Chem. 2012, 22, 6568–6574.
- 137Z. Hu, A. Nalaparaju, Y. Peng, J. Jiang, D. Zhao, Inorg. Chem. 2016, 55, 1134–1141.
- 138H. Molavi, A. Eskandari, A. Shojaei, S. A. Mousavi, Microporous Mesoporous Mater. 2018, 257, 193–201.
- 139A. Kronast, S. Eckstein, P. T. Altenbuchner, K. Hindelang, S. I. Vagin, B. Rieger, Chem. Eur. J. 2016, 22, 12800–12807.
- 140Z. H. Rada, H. R. Abid, J. Shang, H. Sun, Y. He, P. Webley, S. Liu, S. Wang, Ind. Eng. Chem. Res. 2016, 55, 7924–7932.
- 141S. Bellatreche, M. A. Hasnaoui, R. Ghezini, A. Bengueddach, Fluid Phase Equilib. 2018, 459, 230–237.
- 142H. Thakkar, A. Issa, A. A. Rownaghi, F. Rezaei, Chem. Eng. Technol. 2017, 40, 1999–2007.
- 143S. Mahzoon, S. Fatemi, S. J. Hashemi, Int. J. Theor. App. Nano. 2012, 1, 90–98.
- 144R. N. Salehi, S. Sharifnia, F. Rahimpour, J. Nat. Gas Sci. Eng. 2018, 54, 37–46.
- 145J. C. Poshusta, R. D. Noble, J. L. Falconer, J. Membr. Sci. 2001, 186, 25–40.
- 146Z. Pourmahdi, H. Maghsoudi, Adsorption 2017, 23, 799–807.
- 147D. Wang, P. Tian, M. Yang, S. Xu, D. Fan, X. Su, Y. Yang, C. Wang, Z. Liu, Microporous Mesoporous Mater. 2014, 194, 8–14.
- 148L. Zhang, R. Fu, L. Mathivathanan, A. J. Hernández-Maldonado, Microporous Mesoporous Mater. 2012, 147, 274–280.
- 149X. Zhang, R. Zhang, H. Liu, H. Gao, Z. Liang, Appl. Energy 2018, 218, 417–429.
- 150A. Otto, T. Grube, S. Schiebahn, D. Stolten, Energy Environ. Sci. 2015, 8, 3283–3297.
- 151M. Usman, Z. Zeb, H. Ullah, M. H. Suliman, M. Humayun, L. Ullah, S. N. A. Shah, U. Ahmed, M. Saeed, J. Environ. Chem. Eng. 2022, 10, 107548.
- 152T. Numpilai, S. Kahadit, T. Witoon, B. V. Ayodele, C. K. Cheng, N. Siri-Nguan, T. Sornchamni, C. Wattanakit, M. Chareonpanich, J. Limtrakul, Top. Catal. 2021, 64, 316–327.
- 153Z. He, M. Cui, Q. Qian, J. Zhang, H. Liu, B. Han, Proc. Nat. Acad. Sci. 2019, 116, 12654.
- 154W. Wang, S. Wang, X. Ma, J. Gong, Chem. Soc. Rev. 2011, 40, 3703–3727.
- 155C. Li, X. Yuan, K. Fujimoto, Appl. Catal. A 2014, 475, 155–160.
- 156F. M. Kirchberger, Y. Liu, P. N. Plessow, M. Tonigold, F. Studt, M. Sanchez-Sanchez, J. A. Lercher, Proc. Nat. Acad. Sci. 2022, 119, e2103840119.
- 157P. Lu, E. Hondo, L. Gapu Chizema, C. Lu, Y. Mei, M. Tong, C. Xing, R. Yang, Catal. Lett. 2019, 149, 3203–3216.
- 158Q. Ge, Y. Lian, X. Yuan, X. Li, K. Fujimoto, Catal. Commun. 2008, 9, 256–261.
- 159A. Z. Varzaneh, J. Towfighi, A. Mohamadalizadeh, J. Anal. Appl. Pyrolysis 2014, 107, 165–173.
- 160J. Chen, X. Wang, D. Wu, J. Zhang, Q. Ma, X. Gao, X. Lai, H. Xia, S. Fan, T.-S. Zhao, Fuel 2019, 239, 44–52.
- 161I. Yarulina, K. De Wispelaere, S. Bailleul, J. Goetze, M. Radersma, E. Abou-Hamad, I. Vollmer, M. Goesten, B. Mezari, E. J. M. Hensen, J. S. Martínez-Espín, M. Morten, S. Mitchell, J. Perez-Ramirez, U. Olsbye, B. M. Weckhuysen, V. Van Speybroeck, F. Kapteijn, J. Gascon, Nat. Chem. 2018, 10, 804–812.
- 162A. Ramirez, L. Gevers, A. Bavykina, S. Ould-Chikh, J. Gascon, ACS Catal. 2018, 8, 9174–9182.
- 163S. G. Jadhav, P. D. Vaidya, B. M. Bhanage, J. B. Joshi, Chem. Eng. Res. Des. 2014, 92, 2557–2567.
- 164M. Westgård Erichsen, S. Svelle, U. Olsbye, Catal. Today 2013, 215, 216–223.
- 165B. Zhao, P. Zhai, P. Wang, J. Li, T. Li, M. Peng, M. Zhao, G. Hu, Y. Yang, Y.-W. Li, Q. Zhang, W. Fan, D. Ma, Chem 2017, 3, 323–333.
- 166K. Cheng, W. Zhou, J. Kang, S. He, S. Shi, Q. Zhang, Y. Pan, W. Wen, Y. Wang, Chem 2017, 3, 334–347.
- 167Z. Zhong, U. Etim, Y. Song, Front. Energy Res. 2020, 8.
- 168I. Yarulina, A. D. Chowdhury, F. Meirer, B. M. Weckhuysen, J. Gascon, Nat. Catal. 2018, 1, 398–411.
- 169R. Batchu, V. V. Galvita, K. Alexopoulos, K. Van der Borght, H. Poelman, M.-F. Reyniers, G. B. Marin, Appl. Catal. A 2017, 538, 207–220.
- 170N. Rahimi, R. Karimzadeh, Appl. Catal. A 2011, 398, 1–17.
- 171S. Kotrel, H. Knözinger, B. C. Gates, Microporous Mesoporous Mater. 2000, 35–36, 11–20.
- 172M. P. Duduković, F. Larachi, P. L. Mills, Catal. Rev. 2002, 44, 123–246.
- 173Y. V. Joshi, K. T. Thomson, J. Phys. Chem. C 2008, 112, 12825–12833.
- 174V. R. Choudhary, D. Panjala, S. Banerjee, Appl. Catal. A 2002, 231, 243–251.
- 175A. Poursaeidesfahani, M. F. de Lange, F. Khodadadian, D. Dubbeldam, M. Rigutto, N. Nair, T. J. H. Vlugt, J. Catal. 2017, 353, 54–62.
- 176X. Zhou, X.-Y. Wei, Z.-Q. Liu, J.-H. Lv, Y.-L. Wang, Z.-K. Li, Z.-M. Zong, Catal. Commun. 2017, 98, 38–42.
- 177R. Klajn, J. F. Stoddart, B. A. Grzybowski, Chem. Soc. Rev. 2010, 39, 2203–2237.
- 178H. D. Kim, H.-T. Song, A. Fazeli, A. Alizadeh Eslami, Y. S. Noh, N. Ghaffari Saeidabad, K.-Y. Lee, D. J. Moon, Catal. Today 2020, 388–389, 410-416.
- 179S. B. Jo, T. Y. Kim, C. H. Lee, S.-H. Kang, J. W. Kim, M. Jeong, S. C. Lee, J. C. Kim, Catal. Commun. 2019, 127, 29–33.
- 180T. Numpilai, C. Wattanakit, M. Chareonpanich, J. Limtrakul, T. Witoon, Energy Convers. Manage. 2019, 180, 511–523.
- 181M. Ghasemi, M. Mohammadi, M. Sedighi, Microporous Mesoporous Mater. 2020, 297, 110029.
- 182M. Sedighi, M. Mohammadi, J. CO2 Util. 2020, 35, 236–244.
- 183G. Raveendra, C. Li, Y. Cheng, F. Meng, Z. Li, New J. Chem. 2018, 42, 4419–4431.
- 184X. Liu, M. Wang, H. Yin, J. Hu, K. Cheng, J. Kang, Q. Zhang, Y. Wang, ACS Catal. 2020, 10, 8303–8314.
- 185S. Dang, P. Gao, Z. Liu, X. Chen, C. Yang, H. Wang, L. Zhong, S. Li, Y. Sun, J. Catal. 2018, 364, 382–393.
- 186P. Gao, S. Dang, S. Li, X. Bu, Z. Liu, M. Qiu, C. Yang, H. Wang, L. Zhong, Y. Han, Q. Liu, W. Wei, Y. Sun, ACS Catal. 2018, 8, 571–578.
- 187Y. Ni, Y. Liu, Z. Chen, M. Yang, H. Liu, Y. He, Y. Fu, W. Zhu, Z. Liu, ACS Catal. 2019, 9, 1026–1032.
- 188X. Liu, M. Wang, C. Zhou, W. Zhou, K. Cheng, J. Kang, Q. Zhang, W. Deng, Y. Wang, Chem. Commun. 2018, 54, 140–143.
- 189J. Su, D. Wang, Y. Wang, H. Zhou, C. Liu, S. Liu, C. Wang, W. Yang, Z. Xie, M. He, ChemCatChem 2018, 10, 1536–1541.
- 190A. Koutsianos, E. Kazimierska, A. R. Barron, M. Taddei, E. Andreoli, Dalton Trans. 2019, 48, 3349–3359.
- 191A. Ramirez, A. Dutta Chowdhury, M. Caglayan, A. Rodriguez-Gomez, N. Wehbe, E. Abou-Hamad, L. Gevers, S. Ould-Chikh, J. Gascon, Catal. Sci. Technol. 2020, 10, 1507–1517.
- 192G. Wang, Y. Wang, J. Cao, X. Wang, Y. Yi, F. Liu, Microporous Mesoporous Mater. 2020, 291, 109693.
- 193Z. Li, J. Wang, Y. Qu, H. Liu, C. Tang, S. Miao, Z. Feng, H. An, C. Li, ACS Catal. 2017, 7, 8544–8548.
- 194Y. Huang, H. Ma, Z. Xu, W. Qian, H. Zhang, W. Ying, Fuel 2020, 273, 117771.
- 195L. Yao, X. Shen, Y. Pan, Z. Peng, Energy Fuels 2020, 34, 8635–8643.
- 196M. Tong, E. Hondo, L. Gapu Chizema, C. Du, Q. Ma, S. Mo, C. Lu, P. Lu, N. Tsubaki, New J. Chem. 2020, 44, 9328–9336.
- 197S. Wang, P. Wang, D. Shi, S. He, L. Zhang, W. Yan, Z. Qin, J. Li, M. Dong, J. Wang, U. Olsbye, W. Fan, ACS Catal. 2020, 10, 2046–2059.
- 198H. Tian, J. Yao, F. Zha, L. Yao, Y. Chang, Appl. Clay Sci. 2020, 184, 105392.
- 199S. Dang, S. Li, C. Yang, X. Chen, X. Li, L. Zhong, P. Gao, Y. Sun, ChemSusChem 2019, 12, 3582–3591.
- 200J. Gao, C. Jia, B. Liu, Catal. Sci. Technol. 2017, 7, 5602–5607.
- 201F. Marques Mota, D. H. Kim, Chem. Soc. Rev. 2019, 48, 205–259.