Strategies to Enhance ZnO Photocatalyst's Performance for Water Treatment: A Comprehensive Review
Abdo Hezam
Center for Materials Science and Technology, University of Mysore, Vijana Bhavana, Manasagangothiri, 570 006 Mysuru, India
Leibniz-Institute for Catalysis at the University of Rostock, 18059 Rostock, Germany
Search for more papers by this authorCorresponding Author
Dr. Q. A. Drmosh
Interdisciplinary Research Center for Hydrogen and Energy Storage (HES), King Fahd University of Petroleum and Minerals (KFUPM), 31261 Dhahran, Saudi Arabia
Search for more papers by this authorDeepalekshmi Ponnamma
Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, 122104 Qatar
Search for more papers by this authorMohammed Abdullah Bajiri
Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, 577 451 Shankaraghatta, India
Search for more papers by this authorMohammad Qamar
Interdisciplinary Research Center for Hydrogen and Energy Storage (HES), King Fahd University of Petroleum and Minerals (KFUPM), 31261 Dhahran, Saudi Arabia
Search for more papers by this authorK. Namratha
DOS in Earth Science, University of Mysore, Mysuru, 570 006 India
Search for more papers by this authorMina Zare
Center for Materials Science and Technology, University of Mysore, Vijana Bhavana, Manasagangothiri, 570 006 Mysuru, India
Search for more papers by this authorM. B. Nayan
Center for Materials Science and Technology, University of Mysore, Vijana Bhavana, Manasagangothiri, 570 006 Mysuru, India
Search for more papers by this authorSagheer A. Onaizi
Interdisciplinary Research Center for Hydrogen and Energy Storage (HES), King Fahd University of Petroleum and Minerals (KFUPM), 31261 Dhahran, Saudi Arabia
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, 31216 Dhahran, Saudi Arabia
Search for more papers by this authorCorresponding Author
K. Byrappa
Adichunchanagiri University, N.H.75, 571448 B. G. Nagara, Mandya District, India
Search for more papers by this authorAbdo Hezam
Center for Materials Science and Technology, University of Mysore, Vijana Bhavana, Manasagangothiri, 570 006 Mysuru, India
Leibniz-Institute for Catalysis at the University of Rostock, 18059 Rostock, Germany
Search for more papers by this authorCorresponding Author
Dr. Q. A. Drmosh
Interdisciplinary Research Center for Hydrogen and Energy Storage (HES), King Fahd University of Petroleum and Minerals (KFUPM), 31261 Dhahran, Saudi Arabia
Search for more papers by this authorDeepalekshmi Ponnamma
Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, 122104 Qatar
Search for more papers by this authorMohammed Abdullah Bajiri
Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, 577 451 Shankaraghatta, India
Search for more papers by this authorMohammad Qamar
Interdisciplinary Research Center for Hydrogen and Energy Storage (HES), King Fahd University of Petroleum and Minerals (KFUPM), 31261 Dhahran, Saudi Arabia
Search for more papers by this authorK. Namratha
DOS in Earth Science, University of Mysore, Mysuru, 570 006 India
Search for more papers by this authorMina Zare
Center for Materials Science and Technology, University of Mysore, Vijana Bhavana, Manasagangothiri, 570 006 Mysuru, India
Search for more papers by this authorM. B. Nayan
Center for Materials Science and Technology, University of Mysore, Vijana Bhavana, Manasagangothiri, 570 006 Mysuru, India
Search for more papers by this authorSagheer A. Onaizi
Interdisciplinary Research Center for Hydrogen and Energy Storage (HES), King Fahd University of Petroleum and Minerals (KFUPM), 31261 Dhahran, Saudi Arabia
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, 31216 Dhahran, Saudi Arabia
Search for more papers by this authorCorresponding Author
K. Byrappa
Adichunchanagiri University, N.H.75, 571448 B. G. Nagara, Mandya District, India
Search for more papers by this authorAbstract
Despite the photocatalytic organic pollutant degradation using ZnO started in 1910–1911, many challenges are still ahead, and several critical issues have to be addressed. Large band gap, and short life-time of photogenerated electrons and holes are critical issues negatively affect the photocatalytic activity of ZnO. Various approaches have been introduced to overcome these issues including intrinsic doping, extrinsic doping, and heterostructure. This review introduces unique and deep insights into tuning of the photocatalytic activity of ZnO. It starts by description of how to tune the photocatalytic activity of pristine ZnO through tuning its morphology, surface area, exposed face, and intrinsic defects. Afterward, the review explains how the Z-scheme approach succeed to address the redox weakened issue of heterojunction approach. In general, this review provides a clear image that helps the researcher to tune the photocatalytic activity of pristine ZnO and its heterostructure.
References
- 1M. Pirhashemi, A. Habibi-Yangjeh, S. R. Pouran, J Ind Eng Chem 2018, 62, 1–25.
- 2Y. Zhang, B. Wu, H. Xu, H. Liu, M. Wang, Y. He, B. Pan, NanoImpact 2016, 3, 22–39.
- 3C. B. Ong, L. Y. Ng, A. W. Mohammad, Renewable Sustainable Energy Rev. 2018, 81, 536–551.
- 4M. Zhou, X. Gao, Y. Hu, J. Chen, X. Hu, Appl. Catal. B 2013, 138, 1–8.
- 5J. M. Dickhout, J. Moreno, P. Biesheuvel, L. Boels, R. G. Lammertink, W. M. de Vos, J. Colloid Interface Sci. 2017, 487, 523–534.
- 6T. Asami, H. Katayama, J. R. Torrey, C. Visvanathan, H. Furumai, Water Res. 2016, 101, 84–94.
- 7C. Kresge, M. Leonowicz, W. J. Roth, J. Vartuli, J. Beck, Nature 1992, 359, 710.
- 8D. Li, M. Ma, Clean products and processes 2000, 2, 112–116.
10.1007/s100980000061 Google Scholar
- 9C. Weidlich, K.-M. Mangold, K. Jüttner, Electrochim. Acta 2001, 47, 741–745.
- 10A. Ketsetzi, A. Stathoulopoulou, K. D. Demadis, Desalination 2008, 223, 487–493.
- 11C. Comninellis, C. Pulgarin, J. Appl. Electrochem. 1991, 21, 703–708.
- 12M.-L. Pype, M. G. Lawrence, J. Keller, W. Gernjak, Water Res. 2016, 98, 384–395.
- 13I. Munoz, A. Rodriguez, R. Rosal, A. R. Fernandez-Alba, Sci. Total Environ. 2009, 407, 1245–1256.
- 14M. N. Chong, B. Jin, C. W. Chow, C. Saint, Water Res. 2010, 44, 2997–3027.
- 15P. K. Robertson, J. M. Robertson, D. W. Bahnemann, J. Hazard. Mater. 2012, 211, 161–171.
- 16M. Mousavi, A. Habibi-Yangjeh, M. Abitorabi, J. Colloid Interface Sci. 2016, 480, 218–231.
- 17S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, J. Sun, RSC Adv. 2015, 5, 14610–14630.
- 18A. El Golli, M. Fendrich, N. Bazzanella, C. Dridi, A. Miotello, M. Orlandi, J. Environ. Manage. 2021, 286, 112226.
- 19D. Leonello, M. A. Fendrich, F. Parrino, N. Patel, M. Orlandi, A. Miotello, Appl. Sci. 2021, 11, 8458.
- 20A. Al Baroot, M. Alheshibri, Q. Drmosh, S. Akhtar, E. Kotb, K. A. Elsayed, Arab. J. Chem. 2022, 15, 103606.
- 21M. Zare, K. Namratha, S. Alghamdi, Y. H. E. Mohammad, A. Hezam, M. Zare, Q. A. Drmosh, K. Byrappa, B. N. Chandrashekar, S. Ramakrishna, Sci. Rep. 2019, 9, 1–15.
- 22Q. A. Drmosh, I. O. Alade, M. Qamar, S. Akbar, Chem. Asian J. 2021.
- 23A. Hezam, K. Namratha, Q. Drmosh, Z. Yamani, K. Byrappa, Ceram. Int. 2017, 43, 5292–5301.
- 24J. Plotnikow, in Textbook of Photochemistry. Editor, Textbook of Photochemistry, Berlin, 1910.
- 25J. K. Ludwik Bruner, Zeitschrift für Elektrochemie und angewandte physikalische Chemie 1911, 17, 354–360.
- 26A. Eibner, Chemiker Zeitung 1911, 35, 753–775.
- 27M. Landau, Comptes rendus 1913, 156, 1894–1896.
- 28M. Landau, Comptes rendus 1912, 152, 1308–1309.
- 29E. Baur, A. Perret, Helv. Chim. Acta 1924, 7, 910–915.
- 30G. Tammann, Z. Anorg. Allg. Chem. 1920, 114, 151–152.
- 31M. Ni, M. K. Leung, D. Y. Leung, K. Sumathy, Renewable Sustainable Energy Rev. 2007, 11, 401–425.
- 32A. Janotti, C. G. Van de Walle, Phys. Rev. B 2007, 76, 165202.
- 33F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, T. Uyar, Nanoscale 2014, 6, 10224–10234.
- 34M. Satheesan, K. Baiju, V. Kumar, J. Mater. Sci. Mater. Electron. 2017, 28, 4719–4724.
- 35M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, X. Zhao, J. Am. Chem. Soc. 2011, 133, 16414–16417.
- 36J. Wang, R. Chen, L. Xiang, S. Komarneni, Ceram. Int. 2018, 44, 7357–7377.
- 37D. Chen, Z. Wang, T. Ren, H. Ding, W. Yao, R. Zong, Y. Zhu, J. Phys. Chem. C 2014, 118, 15300–15307.
- 38C. A. Aggelopoulos, M. Dimitropoulos, A. Govatsi, L. Sygellou, C. D. Tsakiroglou, S. N. Yannopoulos, Appl. Catal. B 2017, 205, 292–301.
- 39A. B. Patil, K. R. Patil, S. K. Pardeshi, J. Solid State Chem. 2011, 184, 3273–3279.
- 40C. Wang, D. Wu, P. Wang, Y. Ao, J. Hou, J. Qian, Appl. Surf. Sci. 2015, 325, 112–116.
- 41Y. Lv, C. Pan, X. Ma, R. Zong, X. Bai, Y. Zhu, Appl. Catal. B 2013, 138, 26–32.
- 42H.-L. Guo, Q. Zhu, X.-L. Wu, Y.-F. Jiang, X. Xie, A.-W. Xu, Nanoscale 2015, 7, 7216–7223.
- 43A. Hezam, K. Namratha, Q. Drmosh, B. N. Chandrashekar, K. K. Sadasivuni, Z. Yamani, C. Cheng, K. Byrappa, CrystEngComm 2017, 19, 3299–3312.
- 44L. Schmidt-Mende, J. L. MacManus-Driscoll, Mater. Today 2007, 10, 40–48.
- 45M. Samadi, H. A. Shivaee, A. Pourjavadi, A. Z. Moshfegh, Appl. Catal. A 2013, 466, 153–160.
- 46S. Klubnuan, S. Suwanboon, P. Amornpitoksuk, Opt. Mater. 2016, 53, 134–141.
- 47S. A. Ansari, M. M. Khan, S. Kalathil, A. Nisar, J. Lee, M. H. Cho, Nanoscale 2013, 5, 9238–9246.
- 48A. Janotti, C. G. Van de Walle, Rep. Prog. Phys. 2009, 72, 126501.
- 49S. K. Cushing, F. Meng, J. Zhang, B. Ding, C. K. Chen, C.-J. Chen, R.-S. Liu, A. D. Bristow, J. Bright, P. Zheng, ACS Catal. 2017, 7, 1742–1748.
- 50J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Sol. Energy Mater. Sol. Cells 2006, 90, 1773–1787.
- 51H. Wang, C. Xie, Phys. E 2008, 40, 2724–2729.
- 52A. Prakash, D. Bahadur, Phys. Chem. Chem. Phys. 2014, 16, 21429–21437.
- 53A. Hezam, K. Namratha, Q. Drmosh, B. N. Chandrashekar, G. K. Jayaprakash, C. Cheng, S. S. Swamy, K. Byrappa, Ceram. Int. 2018, 44, 7202–7208.
- 54X. Pan, M.-Q. Yang, Y.-J. Xu, Phys. Chem. Chem. Phys. 2014, 16, 5589–5599.
- 55F. Liu, Y. H. Leung, A. B. Djurisic, A. M. C. Ng, W. K. Chan, J. Phys. Chem. C 2013, 117, 12218–12228.
- 56Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu, Y. Zhu, Inorg. Chem. 2007, 46, 6675–6682.
- 57S. G. Ullattil, P. Periyat, B. Naufal, M. A. Lazar, Ind. Eng. Chem. Res. 2016, 55, 6413–6421.
- 58J. Wang, P. Liu, X. Fu, Z. Li, W. Han, X. Wang, Langmuir 2008, 25, 1218–1223.
- 59A. Hezam, K. Namratha, Q. A. Drmosh, D. Ponnamma, J. Wang, S. Prasad, M. Ahamed, C. Cheng, K. Byrappa, ACS ACS Appl. Nano Mater. 2020, 3, 138–148.
- 60A. Hezam, K. Namratha, D. Ponnamma, Q. Drmosh, A. M. N. Saeed, K. K. Sadasivuni, K. Byrappa, ACS Omega 2019, 4, 20595–20605.
- 61Y. Xu, H. Li, B. Sun, P. Qiao, L. Ren, G. Tian, B. Jiang, K. Pan, W. Zhou, Chem. Eng. J. 2020, 379, 122295.
- 62Y. Bai, J. Zhao, Z. Lv, K. Lu, J. Mater. Sci. 2020, 55, 14112–14124.
- 63X. Bai, B. Sun, X. Wang, T. Zhang, Q. Hao, B.-J. Ni, R. Zong, Z. Zhang, X. Zhang, H. Li, CrystEngComm 2020, 22, 2709–2717.
- 64Y. Lin, H. Hu, Y. H. Hu, Appl. Surf. Sci. 2020, 502, 144202.
- 65S. Cho, J.-W. Jang, J. S. Lee, K.-H. Lee, Langmuir 2010, 26, 14255–14262.
- 66Y. A. Haleem, Q. He, D. Liu, C. Wang, W. Xu, W. Gan, Y. Zhou, C. Wu, Y. Ding, L. Song, RSC Adv. 2017, 7, 15390–15396.
- 67J. Xie, Y. Li, W. Zhao, L. Bian, Y. Wei, Powder Technol. 2011, 207, 140–144.
- 68E. S. Jang, J. H. Won, S. J. Hwang, J. H. Choy, Adv. Mater. 2006, 18, 3309–3312.
- 69A. Mclaren, T. Valdes-Solis, G. Li, S. C. Tsang, J. Am. Chem. Soc. 2009, 131, 12540–12541.
- 70N. Kislov, J. Lahiri, H. Verma, D. Y. Goswami, E. Stefanakos, M. Batzill, Langmuir 2009, 25, 3310–3315.
- 71J. H. Zeng, B. B. Jin, Y. F. Wang, Chem. Phys. Lett. 2009, 472, 90–95.
- 72T. R. Chetia, M. S. Ansari, M. Qureshi, ACS Appl. Mater. Interfaces 2015, 7, 13266–13279.
- 73J. Chang, E. R. Waclawik, CrystEngComm 2012, 14, 4041–4048.
- 74D. D. Thongam, J. Gupta, N. K. Sahu, D. Bahadur, J. Mater. Sci. 2018, 53, 1110–1122.
- 75G. Li, T. Hu, G. Pan, T. Yan, X. Gao, H. Zhu, J. Phys. Chem. C 2008, 112, 11859–11864.
- 76J. Becker, K. R. Raghupathi, J. St Pierre, D. Zhao, R. T. Koodali, J. Phys. Chem. C 2011, 115, 13844–13850.
- 77H. Wang, C. Xie, W. Zhang, S. Cai, Z. Yang, Y. Gui, J. Hazard. Mater. 2007, 141, 645–652.
- 78A. Dodd, A. McKinley, M. Saunders, T. Tsuzuki, J. Nanopart. Res. 2006, 8, 43.
- 79D. Li, H. Haneda, Chemosphere 2003, 51, 129–137.
- 80E. Kusiak-Nejman, J. Wojnarowicz, A. Morawski, U. Narkiewicz, K. Sobczak, S. Gierlotka, W. Lojkowski, Appl. Surf. Sci. 2020, 541, 148416.
- 81A. Kusior, K. Michalec, P. Jelen, M. Radecka, Appl. Surf. Sci. 2019, 476, 342–352.
- 82J. Kundu, S. Khilari, D. Pradhan, ACS Appl. Mater. Interfaces 2017, 9, 9669–9680.
- 83R. Khan, M. S. Hassan, L.-W. Jang, J. H. Yun, H.-K. Ahn, M.-S. Khil, I.-H. Lee, Ceram. Int. 2014, 40, 14827–14831.
- 84L. Wang, L. Chang, B. Zhao, Z. Yuan, G. Shao, W. Zheng, Inorg. Chem. 2008, 47, 1443–1452.
- 85Q. Wan, T. Wang, J. Zhao, Appl. Phys. Lett. 2005, 87, 083105.
- 86A. Leelavathi, G. Madras, N. Ravishankar, Phys. Chem. Chem. Phys. 2013, 15, 10795–10802.
- 87X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Sci. Rep. 2014, 4, 4596.
- 88P. V. Adhyapak, S. P. Meshram, I. S. Mulla, S. K. Pardeshi, D. P. Amalnerkar, Mater. Sci. Semicond. Process. 2014, 27, 197–206.
- 89A. Das, R. G. Nair, J. Alloys Compd. 2020, 817, 153277.
- 90F. Ahmed, N. Arshi, M. Anwar, R. Danish, B. H. Koo, RSC Adv. 2014, 4, 29249–29263.
- 91H.-B. Kim, D.-W. Jeong, D.-J. Jang, CrystEngComm 2016, 18, 898–906.
- 92C. Shan, Z. Liu, Z. Zhang, D. Shen, S. Hark, J. Phys. Chem. B 2006, 110, 11176–11179.
- 93H. Wang, G. Li, L. Jia, G. Wang, C. Tang, J. Phys. Chem. C 2008, 112, 11738–11743.
- 94Z. Dai, K. Liu, Y. Tang, X. Yang, J. Bao, J. Shen, J. Mater. Chem. 2008, 18, 1919–1926.
- 95Z. Gui, J. Liu, Z. Wang, L. Song, Y. Hu, W. Fan, D. Chen, J. Phys. Chem. B 2005, 109, 1113–1117.
- 96P. X. Gao, Z. L. Wang, J. Am. Chem. Soc. 2003, 125, 11299–11305.
- 97H. Zhou, H. Zhang, Y. Wang, Y. Miao, L. Gu, Z. Jiao, J. Colloid Interface Sci. 2015, 448, 367–373.
- 98Y.-Y. Wang, G.-Q. Zhou, J. Guo, T.-Q. Liu, Ceram. Int. 2016, 42, 12467–12474.
- 99H. Saitoh, M. Satoh, N. Tanaka, Y. Ueda, S. Ohshio, Jpn. J. Appl. Phys. 1999, 38, 6873.
- 100Z. W. Pan, Z. L. Wang, Science 2001, 291, 1947–1949.
- 101W. I. Park, D. H. Kim, S.-W. Jung, G.-C. Yi, Appl. Phys. Lett. 2002, 80, 4232–4234.
- 102L. Vayssieres, Adv. Mater. 2003, 15, 464–466.
- 103J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, C. Yan, Chem. Mater. 2002, 14, 4172–4177.
- 104H. Zhang, X. Ma, J. Xu, J. Niu, D. Yang, Nanotechnology 2003, 14, 423.
- 105H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu, D. Que, Nanotechnology 2004, 15, 622.
- 106B. Liu, H. C. Zeng, J. Am. Chem. Soc. 2003, 125, 4430–4431.
- 107T. Thilagavathi, D. Geetha, Applied Nanoscience 2014, 4, 127–132.
- 108D. Chen, Z. Li, C. Yu, Y. Shi, Z. Zhang, B. Tu, D. Zhao, Chem. Mater. 2005, 17, 3228–3234.
- 109K. L. Meagley, S. P. Garcia, Cryst. Growth Des. 2012, 12, 707–713.
- 110F. Li, Y. Ding, P. Gao, X. Xin, Z. L. Wang, Angew. Chem. Int. Ed. 2004, 43, 5238–5242;
Angew. Chem. 2004, 116, 5350–5354.
10.1002/ange.200460783 Google Scholar
- 111P. R. Chang, J. Yu, X. Ma, Carbohydr. Polym. 2011, 83, 1016–1019.
- 112A.-J. Wang, Q.-C. Liao, J.-J. Feng, P.-P. Zhang, A.-Q. Li, J.-J. Wang, CrystEngComm 2012, 14, 256–263.
- 113J. Rao, A. Yu, C. Shao, X. Zhou, ACS Appl. Mater. Interfaces 2012, 4, 5346–5352.
- 114M. Kavitha, H. John, P. Gopinath, Mater. Res. Bull. 2014, 49, 132–137.
- 115Y.-H. Tseng, H.-Y. Lin, M.-H. Liu, Y.-F. Chen, C.-Y. Mou, J. Phys. Chem. C 2009, 113, 18053–18061.
- 116C. Zhang, Y. Wang, S. Bi, G. Luo, Ind. Eng. Chem. Res. 2011, 50, 13355–13361.
- 117X. L. Zhang, R. Qiao, R. Qiu, J. C. Kim, Y. S. Kang, Cryst. Growth Des. 2009, 9, 2906–2910.
- 118S. Wei, J. Lian, Q. Jiang, Appl. Surf. Sci. 2009, 255, 6978–6984.
- 119H. Zhang, R. Wu, Z. Chen, G. Liu, Z. Zhang, Z. Jiao, CrystEngComm 2012, 14, 1775–1782.
- 120A. Barhoum, S. El-Sheikh, F. Morsy, S. El-Sherbiny, F. Reniers, T. Dufour, M.-P. Delplancke, G. Van Assche, H. Rahier, in Book Preparation and characterization of ultra-hydrophobic calcium carbonate nanoparticles, ed., ed. by Editor, IOP Publishing, City, 2014, Vol. 64, Chap. Chapter, pp. 012037.
- 121A. Barhoum, J. Melcher, G. Van Assche, H. Rahier, M. Bechelany, M. Fleisch, D. Bahnemann, J. Mater. Sci. 2017, 52, 2746–2762.
- 122R. J. Hebert, in Nanocrystal, InTechOpen, 2011, pp. 111–136.
- 123A. P. LaGrow, B. Ingham, M. F. Toney, R. D. Tilley, J. Phys. Chem. C 2013, 117, 16709–16718.
- 124S. M. El-Sheikh, A. Barhoum, S. El-Sherbiny, F. Morsy, A. A.-H. El-Midany, H. Rahier, Arab. J. Chem. 2014, 12.
- 125X. Qi, T. Balankura, Y. Zhou, K. A. Fichthorn, Nano Lett. 2015, 15, 7711–7717.
- 126C. R. Bullen, P. Mulvaney, Nano Lett. 2004, 4, 2303–2307.
- 127A. Barhoum, M. Rehan, H. Rahier, M. Bechelany, G. Van Assche, ACS Appl. Mater. Interfaces 2016, 8, 10551–10561.
- 128J. van Embden, P. Mulvaney, Langmuir 2005, 21, 10226–10233.
- 129Y. Miao, H. Zhang, S. Yuan, Z. Jiao, X. Zhu, J. Colloid Interface Sci. 2016, 462, 9–18.
- 130H. Wang, C. Wang, Q. Chen, B. Ren, R. Guan, X. Cao, X. Yang, R. Duan, Appl. Surf. Sci. 2017, 412, 517–528.
- 131F. Xu, Z.-Y. Yuan, G.-H. Du, T.-Z. Ren, C. Bouvy, M. Halasa, B.-L. Su, Nanotechnology 2006, 17, 588.
- 132P. R. Potti, V. C. Srivastava, Ind. Eng. Chem. Res. 2012, 51, 7948–7956.
- 133A. Hezam, K. Namratha, Q. Drmosh, T. Lakshmeesha, S. Srikantaswamy, K. Byrappa, J. Mater. Sci. Mater. Electron. 2018, 29, 13551–13560.
- 134J. Liu, Z.-Y. Hu, Y. Peng, H.-W. Huang, Y. Li, M. Wu, X.-X. Ke, G. Van Tendeloo, B.-L. Su, Appl. Catal. B 2016, 181, 138–145.
- 135F. Stelo, N. Kublik, S. Ullah, H. Wender, J. Alloys Compd. 2020, 829, 154591.
- 136Z. Ye, J. Li, M. Zhou, H. Wang, Y. Ma, P. Huo, L. Yu, Y. Yan, Chem. Eng. J. 2016, 304, 917–933.
- 137X. Lin, J. Xing, W. Wang, Z. Shan, F. Xu, F. Huang, J. Phys. Chem. C 2007, 111, 18288–18293.
- 138S. Balachandran, M. Swaminathan, Dalton Trans. 2013, 42, 5338–5347.
- 139S. Bera, S. Ghosh, R. N. Basu, New J. Chem. 2018, 42, 541–554.
- 140M. Wang, L. Cui, S. Li, Z. Li, T. Ma, G. Luan, W. Liu, F. Zhang, RSC Adv. 2016, 6, 58452–58457.
- 141L. Lin, Y. Yang, L. Men, X. Wang, D. He, Y. Chai, B. Zhao, S. Ghoshroy, Q. Tang, Nanoscale 2013, 5, 588–593.
- 142R. Zha, R. Nadimicherla, X. Guo, J. Mater. Chem. A 2015, 3, 6565–6574.
- 143M. T. Uddin, M. E. Hoque, M. C. Bhoumick, RSC Adv. 2020, 10, 23554–23565.
- 144Z. Khodami, A. Nezamzadeh-Ejhieh, J. Mol. Catal. A 2015, 409, 59–68.
- 145H. Liu, H. Zhai, C. Hu, J. Yang, Z. Liu, Nanoscale Res. Lett. 2017, 12, 466.
- 146Z. Wang, B. Huang, Y. Dai, X. Qin, X. Zhang, P. Wang, H. Liu, J. Yu, J. Phys. Chem. C 2009, 113, 4612–4617.
- 147Y. Sun, Q. Zhao, J. Gao, Y. Ye, W. Wang, R. Zhu, J. Xu, L. Chen, J. Yang, L. Dai, Nanoscale 2011, 3, 4418–4426.
- 148X. Yan, C. Zou, X. Gao, W. Gao, J. Mater. Chem. 2012, 22, 5629–5640.
- 149S. Jung, K. Yong, Chem. Commun. 2011, 47, 2643–2645.
- 150M. Ding, N. Yao, C. Wang, J. Huang, M. Shao, S. Zhang, P. Li, X. Deng, X. Xu, Nanoscale Res. Lett. 2016, 11, 1–7.
- 151Y.-H. Tan, K. Yu, J.-Z. Li, H. Fu, Z.-Q. Zhu, J. Appl. Phys. 2014, 116, 064305.
- 152S. Li, K. Yu, Y. Wang, Z. Zhang, C. Song, H. Yin, Q. Ren, Z. Zhu, CrystEngComm 2013, 15, 1753–1761.
- 153Y. Wang, S. Li, H. Shi, K. Yu, Nanoscale 2012, 4, 7817–7824.
- 154M. H. Habibi, M. H. Rahmati, Spectrochim. Acta Part A 2015, 137, 160–164.
- 155X. Zou, H. Fan, Y. Tian, S. Yan, CrystEngComm 2014, 16, 1149–1156.
- 156Y. Yang, W. Que, X. Zhang, Y. Xing, X. Yin, Y. Du, J. Hazard. Mater. 2016, 317, 430–439.
- 157P. Nandi, D. Das, J. Phys. Chem. Solids 2020, 143, 109463.
- 158Y. Wu, F. Xu, D. Guo, Z. Gao, D. Wu, K. Jiang, Appl. Surf. Sci. 2013, 274, 39–44.
- 159J. Zhang, P. Zhao, Y. Li, Y. Cao, T. Xie, Y. Lin, Z. Mu, Chem. Phys. Lett. 2021, 762, 138157.
- 160Y.-C. Chang, J.-Y. Guo, C.-M. Chen, H.-W. Di, C.-C. Hsu, Nanoscale 2017, 9, 13235–13244.
- 161Y. Lei, J. Huo, H. Liao, RSC Adv. 2017, 7, 40621–40631.
- 162K. Luo, J. Li, W. Hu, H. Li, Q. Zhang, H. Yuan, F. Yu, M. Xu, S. Xu, Nanomaterials 2020, 10, 1946.
- 163F. Chen, C. Yu, L. Wei, Q. Fan, F. Ma, J. Zeng, J. Yi, K. Yang, H. Ji, Sci. Total Environ. 2020, 706, 136026.
- 164Y. Yang, Z. Wu, R. Yang, Y. Li, X. Liu, L. Zhang, B. Yu, Appl. Surf. Sci. 2021, 539, 148220.
- 165A. M. Taddesse, M. Alemu, T. Kebede, J. Environ. Chem. Eng. 2020, 8, 104356.
- 166S. Moradi, S. A. Sobhgol, F. Hayati, A. A. Isari, B. Kakavandi, P. Bashardoust, B. Anvaripour, Sep. Purif. Technol. 2020, 251, 117373.
- 167N. Kumaresan, M. M. A. Sinthiya, K. Ramamurthi, R. R. Babu, K. Sethuraman, Arab. J. Chem. 2020, 13, 3910–3928.
- 168P. Ghasemipour, M. Fattahi, B. Rasekh, F. Yazdian, Sci. Rep. 2020, 10, 1–16.
- 169S. Pal, S. Maiti, U. N. Maiti, K. K. Chattopadhyay, CrystEngComm 2015, 17, 1464–1476.
- 170N. Zhang, S. Xie, B. Weng, Y.-J. Xu, J. Mater. Chem. A 2016, 4, 18804–18814.
- 171P. Wen, Y. Sun, H. Li, Z. Liang, H. Wu, J. Zhang, H. Zeng, S. M. Geyer, L. Jiang, Appl. Catal. B 2020, 263, 118180.
- 172G. Zhang, T. Dai, Y. Meng, L. Zhang, C. Yang, G. Pan, Z. Ni, S. Xia, Appl. Surf. Sci. 2020, 532, 147456.
- 173S. Liang, B. Han, X. Liu, W. Chen, M. Peng, G. Guan, H. Deng, Z. Lin, J. Alloys Compd. 2018, 754, 105–113.
- 174L. Zhu, H. Li, P. Xia, Z. Liu, D. Xiong, ACS Appl. Mater. Interfaces 2018, 10, 39679–39687.
- 175J. Wang, Y. Xia, H. Zhao, G. Wang, L. Xiang, J. Xu, S. Komarneni, Appl. Catal. B 2017, 206, 406–416.
- 176W. Yu, D. Xu, T. Peng, J. Mater. Chem. A 2015, 3, 19936–19947.
- 177W. Wang, D. Zhang, Z. Ji, D. Shao, P. Sun, J. Duan, Opt. Mater. 2021, 111, 110721.
- 178H. Wang, D. Peng, T. Chen, Y. Chang, S. Dong, Ceram. Int. 2016, 42, 4406–4412.
- 179S. Kumar, A. Baruah, S. Tonda, B. Kumar, V. Shanker, B. Sreedhar, Nanoscale 2014, 6, 4830–4842.
- 180M. Ebrahimi, M. Samadi, S. Yousefzadeh, M. Soltani, A. Rahimi, T.-c. Chou, L.-C. Chen, K.-H. Chen, A. Z. Moshfegh, ACS Sustainable Chem. Eng. 2017, 5, 367–375.
- 181J. Pan, X. Zhang, J. Mei, S. Wang, M. You, Y. Zheng, C. Cui, C. Li, J. Mater. Sci. Mater. Electron. 2017, 28, 17744–17749.
- 182T. Guo, Q. Jiang, L. Yu, Z. Yu, in Book Cuihua Xuebao/Chinese J, ed., ed. by Editor, Catal, City, 2015, Chap. Chapter.
- 183S. Singh, R. Sharma, B. R. Mehta, Appl. Surf. Sci. 2017, 411, 321–330.
- 184Y. Liu, H. Liu, H. Zhou, T. Li, L. Zhang, Appl. Surf. Sci. 2019, 466, 133–140.
- 185J. Wang, G. Wang, X. Wei, G. Liu, J. Li, Appl. Surf. Sci. 2018, 456, 666–675.
- 186G. Di, Z. Zhu, H. Zhang, J. Zhu, Y. Qiu, D. Yin, S. Küppers, J. Colloid Interface Sci. 2019, 538, 256–266.
- 187N. T. T. Truc, D. S. Duc, D. Van Thuan, T. Al Tahtamouni, T.-D. Pham, N. T. Hanh, D. T. Tran, M. V. Nguyen, N. M. Dang, N. T. P. Le Chi, Appl. Surf. Sci. 2019, 489, 875–882.
- 188P. Kalisamy, M. Lallimathi, M. Suryamathi, B. Palanivel, M. Venkatachalam, RSC Adv. 2020, 10, 28365–28375.
- 189P. Zhu, M. Hu, M. Duan, L. Xie, M. Zhao, J. Alloys Compd. 2020, 840, 155714.
- 190C. Mondal, J. Pal, M. Ganguly, A. K. Sinha, J. Jana, T. Pal, New J. Chem. 2014, 38, 2999–3005.
- 191S. J. Lee, T. Begildayeva, H. J. Jung, R. Koutavarapu, Y. Yu, M. Choi, M. Y. Choi, Chemosphere 2021, 263, 128262.
- 192Z. Wang, J. Liu, W. Chen, Dalton Trans. 2012, 41, 4866–4870.
- 193X. Zhang, Y. L. Chen, R.-S. Liu, D. P. Tsai, Rep. Prog. Phys. 2013, 76, 046401.
- 194V. P. Zhdanov, C. Hägglund, B. Kasemo, Surf. Sci. 2005, 599, L372–L375.
- 195X. Chen, H. Y. Zhu, J. C. Zhao, Z. F. Zheng, X. P. Gao, Angew. Chem. 2008, 120, 5433–5436; Angew. Chem. Int. Ed. 2008, 47, 5353–5356.
- 196A. Furube, L. Du, K. Hara, R. Katoh, M. Tachiya, J. Am. Chem. Soc. 2007, 129, 14852–14853.
- 197J. Li, S. K. Cushing, P. Zheng, T. Senty, F. Meng, A. D. Bristow, A. Manivannan, N. Wu, J. Am. Chem. Soc. 2014, 136, 8438–8449.
- 198A. Hezam, J. Wang, Q. Drmosh, P. Karthik, M. A. Bajiri, K. Namratha, M. Zare, T. Lakshmeesha, S. Shivanna, C. Cheng, Appl. Surf. Sci. 2020, 541, 148457.
- 199J. Wei, S. Wei, N. Chang, H. Wang, J. Zhang, Nanotechnology 2020, 32, 105706.
- 200J. Xiong, Q. Sun, J. Chen, Z. Li, S. Dou, CrystEngComm 2016, 18, 1713–1722.
- 201S. Ren, Y. Wang, G. Fan, R. Gao, W. Liu, Nanotechnology 2017, 28, 465403.
- 202S. Panneri, P. Ganguly, B. N. Nair, A. A. P. Mohamed, K. G. Warrier, U. N. S. Hareesh, Eur. J. Inorg. Chem. 2016, 2016, 5068–5076.
- 203L. Shi, L. Liang, J. Ma, Y. Meng, S. Zhong, F. Wang, J. Sun, Ceram. Int. 2014, 40, 3495–3502.
- 204S. Wu, X. Shen, G. Zhu, H. Zhou, Z. Ji, K. Chen, A. Yuan, Appl. Catal. B 2016, 184, 328–336.
- 205Q. Zhang, C. Tian, A. Wu, Y. Hong, M. Li, H. Fu, J. Alloys Compd. 2013, 563, 269–273.
- 206W. Cao, L. Chen, Z. Qi, J. Mol. Catal. A 2015, 401, 81–89.
- 207S. Chidambaram, B. Pari, N. Kasi, S. Muthusamy, J. Alloys Compd. 2016, 665, 404–410.
- 208T. S. Tofa, F. Ye, K. L. Kunjali, J. Dutta, Catalysts 2019, 9, 819.
- 209X. Zheng, Z. Zhang, S. Meng, Y. Wang, D. Li, Chem. Eng. J. 2020, 393, 124676.
- 210Q. Drmosh, Z. Yamani, Appl. Surf. Sci. 2016, 375, 57–64.
- 211K. Hossienzadeh, A. Maleki, H. Daraei, M. Safari, R. Pawar, S. M. Lee, Korean J. Chem. Eng. 2019, 36, 1360–1370.
- 212Z. S. Seddigi, S. A. Ahmed, S. P. Ansari, N. H. Yarkandi, E. Danish, A. A. Alkibash, M. D. Oteef, S. Ahmed, Photochem. Photobiol. 2014, 90, 491–495.
- 213R. Bomila, S. Srinivasan, S. Gunasekaran, A. Manikandan, J. Supercond. Novel Magn. 2018, 31, 855–864.
- 214A. Khan, M. Ahmed, A. Adam, A. Azad, M. Qamar, Nanotechnology 2016, 28, 055602.